Question Number 125672 by mathocean1 last updated on 12/Dec/20
$${N}={x}\mathrm{32}{y}\:{in}\:{base}\:\mathrm{10}.\: \\ $$$${N}\equiv\mathrm{0}\left[\mathrm{3}\right]\:{and}\:{N}\equiv\mathrm{0}\left[\mathrm{4}\right]. \\ $$$${N}>\mathrm{8329} \\ $$$${N}\:{has}\:{four}\:{digits}. \\ $$$${Determinate}\:{N}. \\ $$
Answered by JDamian last updated on 12/Dec/20
$${x}+\mathrm{3}+\mathrm{2}+{y}\equiv\mathrm{0}\left[\mathrm{3}\right]\:\:\rightarrow\:\:{x}+{y}\equiv\mathrm{1}\left[\mathrm{3}\right] \\ $$$${N}>\mathrm{8329}\:\:\rightarrow\:\:\boldsymbol{{x}}=\mathrm{9}\:\:\:\rightarrow\:\:{y}\equiv\mathrm{1}\left[\mathrm{3}\right]\:\:\rightarrow\:\:{y}\in\left\{\mathrm{1},\:\mathrm{4},\:\mathrm{7}\right\} \\ $$$$ \\ $$$${N}\equiv\mathrm{0}\left[\mathrm{4}\right]\:\:\rightarrow\:\:\mathrm{2}×\mathrm{2}+{y}\equiv\mathrm{0}\left[\mathrm{4}\right]\:\:\rightarrow\:\:{y}\equiv\mathrm{0}\left[\mathrm{4}\right] \\ $$$$\boldsymbol{{y}}=\mathrm{4} \\ $$$$ \\ $$$$\boldsymbol{{N}}=\mathrm{9324} \\ $$