Question Number 60406 by Tawa1 last updated on 20/May/19
$$\mathrm{n}\:\in\:\mathbb{Z}^{+} ,\:\:\:\mathrm{Find}\:\mathrm{the}\:\mathrm{coefficient}\:\mathrm{of}\:\:\mathrm{x}^{−\mathrm{1}} \:\:\mathrm{in}\:\mathrm{the}\:\mathrm{expansion}\:\mathrm{of}\:\:\:\left(\mathrm{1}\:+\:\mathrm{x}\right)^{\mathrm{n}} \left(\mathrm{1}\:+\:\frac{\mathrm{1}}{\mathrm{x}}\right)^{\mathrm{n}} \\ $$
Answered by mr W last updated on 20/May/19
$$\left(\mathrm{1}+{x}\right)^{{n}} \left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)^{{n}} \\ $$$$=\frac{\mathrm{1}}{{x}^{{n}} }\left(\mathrm{1}+{x}\right)^{\mathrm{2}{n}} \\ $$$$=\frac{\mathrm{1}}{{x}^{{n}} }\underset{{k}=\mathrm{0}} {\overset{\mathrm{2}{n}} {\sum}}{C}_{{k}} ^{\mathrm{2}{n}} {x}^{{k}} \\ $$$$=\underset{{k}=\mathrm{0}} {\overset{\mathrm{2}{n}} {\sum}}{C}_{{k}} ^{\mathrm{2}{n}} {x}^{{k}−{n}} \\ $$$${for}\:{k}−{n}=−\mathrm{1}\Rightarrow{k}={n}−\mathrm{1} \\ $$$${coef}.\:{of}\:{x}^{−\mathrm{1}} \:{is}\:{C}_{{n}−\mathrm{1}} ^{\mathrm{2}{n}} \\ $$
Commented by Tawa1 last updated on 20/May/19
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir},\:\:\mathrm{but}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{is}\:\mathrm{confusing} \\ $$
Commented by Tawa1 last updated on 20/May/19
$$\mathrm{I}\:\mathrm{now}\:\mathrm{understand}\:\mathrm{sir}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$
Commented by Tawa1 last updated on 20/May/19
$$\mathrm{But}\:\mathrm{how}\:\mathrm{can}\:\mathrm{i}\:\mathrm{sum}\:\mathrm{this}.\:\: \\ $$$$\:\:\:\:\overset{\mathrm{n}} {\:}\mathrm{C}_{\mathrm{0}} \overset{\mathrm{n}} {\:}\mathrm{C}_{\mathrm{1}} \:+\:\overset{\mathrm{n}} {\:}\mathrm{C}_{\mathrm{1}} \overset{\mathrm{n}} {\:}\mathrm{C}_{\mathrm{2}} \:+\:\overset{\mathrm{n}} {\:}\mathrm{C}_{\mathrm{2}} \overset{\mathrm{n}} {\:}\mathrm{C}_{\mathrm{3}} \:+\:…\:+\:\overset{\mathrm{n}} {\:}\mathrm{C}_{\mathrm{r}} \overset{\mathrm{n}} {\:}\mathrm{C}_{\mathrm{r}\:+\:\mathrm{1}} \\ $$