Nature-and-Sum-u-n-where-u-n-0-1-x-n-1-1-x-x-n-dx- Tinku Tara June 4, 2023 Differentiation 0 Comments FacebookTweetPin Question Number 126776 by snipers237 last updated on 24/Dec/20 NatureandSumΣunwhereun=∫01xn+11+x+…+xndx Answered by mindispower last updated on 24/Dec/20 1+x+……+xn⩾(n+1).(x∑nk=0k)1n+1=(n+1)xn(n+1)2(n+1)….AMG1+x+……+xn⩾(n+1).(x∑nk=0k)1n+1=(n+1)xn(n+1)2(n+1)….AMGMinquality=(1+n)xn2⇒Un⩽∫01xn+22n+1dx=2(n+1)(n+4)ΣUn⩽2Σ1(n+1)(n+4)…witchcv2ndWaystartewitheΨ(z+1)=−γ+∫011−xz1−xdx….(I)Un=∫01xn+1∑nk=0xkdx=∫01xn+1(1−x)1−xn+1dxy=xn+1⇒dx=y−nn+1n+1dy⇔Un=1n+1∫01y(1−y1n+1)y−nn+11−ydyUn=1n+1∫01y1n+1−y2n+11−ydy=1n+1[∫01y1n+1−11−ydy−∫01y2n+1−11−ydy]ByapplyIUn=Ψ(n+3n+1)−Ψ(n+2n+1)n+1=Ψ(1+2n+1)−Ψ(1+1n+1)n+1Ψ(1+x)−Ψ(1+y)=(y−x)Ψ1(1+c)Byapplymeanvaluetheorem∃c∈[y,x]⇒Ψ(1+2n+1)−Ψ(1+1n+1)=1n+1Ψ1(1+c)c∈[1n+1;2n+1]Ψ1(z)=∑n⩾01(n+z)2Ψ(1)(1+c)=∑n⩾01(1+c+n)2⩽∑n⩾01(1+n)2=ζ(2)=π26⇒Un=Ψ(1+2n+1)−Ψ(1+1n+1)n+1Ψ(1+2n+1)−Ψ(1+1n+1)⩽1n+1.Ψ(1)(1)=π26(n+1)⇒Un⩽π26(n+1)2⇒ΣUn⩽ζ2(2)=π436 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: let-consider-u-n-such-as-u-0-0-1-and-u-n-1-u-n-u-n-2-1-Prove-that-lim-n-n-u-n-1-and-that-the-convergence-domain-of-u-n-x-n-is-D-1-1-2-Prove-that-the-one-of-u-n-2-x-nNext Next post: Question-126778 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.