Menu Close

Nature-and-Sum-u-n-where-u-n-0-1-x-n-1-1-x-x-n-dx-




Question Number 126776 by snipers237 last updated on 24/Dec/20
 Nature and Sum Σu_n     where u_n =∫_0 ^1 (x^(n+1) /(1+x+...+x^n ))dx
NatureandSumΣunwhereun=01xn+11+x++xndx
Answered by mindispower last updated on 24/Dec/20
1+x+......+x^n ≥(n+1).(x^(Σ_(k=0) ^n k) )^(1/(n+1)) =(n+1)x^((n(n+1))/(2(n+1))) ....AM G  1+x+......+x^n ≥(n+1).(x^(Σ_(k=0) ^n k) )^(1/(n+1)) =(n+1)x^((n(n+1))/(2(n+1))) ....AM GM  inquality  =(1+n)x^(n/2)   ⇒U_n ≤∫_0 ^1 (x^((n+2)/2) /(n+1))dx=(2/((n+1)(n+4)))  ΣU_n ≤2Σ(1/((n+1)(n+4)))...witch cv  2nd Way  starte withe  Ψ(z+1)=−γ+∫_0 ^1 ((1−x^z )/(1−x))dx....(I)  U_n =∫_0 ^1 (x^(n+1) /(Σ_(k=0) ^n x^k ))dx=∫_0 ^1 ((x^(n+1) (1−x))/(1−x^(n+1) ))dx  y=x^(n+1) ⇒dx=(y^(−(n/(n+1))) /(n+1))dy  ⇔U_n =(1/(n+1))∫_0 ^1 ((y(1−y^(1/(n+1)) )y^(−(n/(n+1))) )/(1−y))dy  U_n =(1/(n+1))∫_0 ^1 ((y^(1/(n+1)) −y^(2/(n+1)) )/(1−y))dy  =(1/(n+1))[∫_0 ^1 ((y^(1/(n+1)) −1)/(1−y))dy−∫_0 ^1 ((y^(2/(n+1)) −1)/(1−y))dy]  By apply I  U_n =((Ψ(((n+3)/(n+1)))−Ψ(((n+2)/(n+1))))/(n+1))=((Ψ(1+(2/(n+1)))−Ψ(1+(1/(n+1))))/(n+1))  Ψ(1+x)−Ψ(1+y)=(y−x)Ψ^1 (1+c)  By apply mean value   theorem  ∃c∈[y,x]  ⇒Ψ(1+(2/(n+1)))−Ψ(1+(1/(n+1)))=(1/(n+1))Ψ^1 (1+c)  c∈[(1/(n+1));(2/(n+1))]  Ψ^1 (z)=Σ_(n≥0) (1/((n+z)^2 ))  Ψ^((1)) (1+c)=Σ_(n≥0) (1/((1+c+n)^2 ))≤Σ_(n≥0) (1/((1+n)^2 ))=ζ(2)=(π^2 /6)  ⇒U_n =((Ψ(1+(2/(n+1)))−Ψ(1+(1/(n+1))))/(n+1))  Ψ(1+(2/(n+1)))−Ψ(1+(1/(n+1)))≤(1/(n+1)).Ψ^((1)) (1)=(π^2 /(6(n+1)))  ⇒U_n ≤(π^2 /(6(n+1)^2 ))⇒ΣU_n ≤ζ^2 (2)=(π^4 /(36))
1+x++xn(n+1).(xnk=0k)1n+1=(n+1)xn(n+1)2(n+1).AMG1+x++xn(n+1).(xnk=0k)1n+1=(n+1)xn(n+1)2(n+1).AMGMinquality=(1+n)xn2Un01xn+22n+1dx=2(n+1)(n+4)ΣUn2Σ1(n+1)(n+4)witchcv2ndWaystartewitheΨ(z+1)=γ+011xz1xdx.(I)Un=01xn+1nk=0xkdx=01xn+1(1x)1xn+1dxy=xn+1dx=ynn+1n+1dyUn=1n+101y(1y1n+1)ynn+11ydyUn=1n+101y1n+1y2n+11ydy=1n+1[01y1n+111ydy01y2n+111ydy]ByapplyIUn=Ψ(n+3n+1)Ψ(n+2n+1)n+1=Ψ(1+2n+1)Ψ(1+1n+1)n+1Ψ(1+x)Ψ(1+y)=(yx)Ψ1(1+c)Byapplymeanvaluetheoremc[y,x]Ψ(1+2n+1)Ψ(1+1n+1)=1n+1Ψ1(1+c)c[1n+1;2n+1]Ψ1(z)=n01(n+z)2Ψ(1)(1+c)=n01(1+c+n)2n01(1+n)2=ζ(2)=π26Un=Ψ(1+2n+1)Ψ(1+1n+1)n+1Ψ(1+2n+1)Ψ(1+1n+1)1n+1.Ψ(1)(1)=π26(n+1)Unπ26(n+1)2ΣUnζ2(2)=π436

Leave a Reply

Your email address will not be published. Required fields are marked *