Question Number 126776 by snipers237 last updated on 24/Dec/20
$$\:{Nature}\:{and}\:{Sum}\:\Sigma{u}_{{n}} \\ $$$$\:\:{where}\:{u}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{{n}+\mathrm{1}} }{\mathrm{1}+{x}+…+{x}^{{n}} }{dx} \\ $$
Answered by mindispower last updated on 24/Dec/20
$$\mathrm{1}+{x}+……+{x}^{{n}} \geqslant\left({n}+\mathrm{1}\right).\left({x}^{\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}{k}} \right)^{\frac{\mathrm{1}}{{n}+\mathrm{1}}} =\left({n}+\mathrm{1}\right){x}^{\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}\left({n}+\mathrm{1}\right)}} ….{AM}\:{G} \\ $$$$\mathrm{1}+{x}+……+{x}^{{n}} \geqslant\left({n}+\mathrm{1}\right).\left({x}^{\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}{k}} \right)^{\frac{\mathrm{1}}{{n}+\mathrm{1}}} =\left({n}+\mathrm{1}\right){x}^{\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}\left({n}+\mathrm{1}\right)}} ….{AM}\:{GM} \\ $$$${inquality} \\ $$$$=\left(\mathrm{1}+{n}\right){x}^{\frac{{n}}{\mathrm{2}}} \\ $$$$\Rightarrow{U}_{{n}} \leqslant\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{\frac{{n}+\mathrm{2}}{\mathrm{2}}} }{{n}+\mathrm{1}}{dx}=\frac{\mathrm{2}}{\left({n}+\mathrm{1}\right)\left({n}+\mathrm{4}\right)} \\ $$$$\Sigma{U}_{{n}} \leqslant\mathrm{2}\Sigma\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)\left({n}+\mathrm{4}\right)}…{witch}\:{cv} \\ $$$$\mathrm{2}{nd}\:{Way} \\ $$$${starte}\:{withe} \\ $$$$\Psi\left({z}+\mathrm{1}\right)=−\gamma+\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}−{x}^{{z}} }{\mathrm{1}−{x}}{dx}….\left({I}\right) \\ $$$${U}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{{n}+\mathrm{1}} }{\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}{x}^{{k}} }{dx}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{{n}+\mathrm{1}} \left(\mathrm{1}−{x}\right)}{\mathrm{1}−{x}^{{n}+\mathrm{1}} }{dx} \\ $$$${y}={x}^{{n}+\mathrm{1}} \Rightarrow{dx}=\frac{{y}^{−\frac{{n}}{{n}+\mathrm{1}}} }{{n}+\mathrm{1}}{dy} \\ $$$$\Leftrightarrow{U}_{{n}} =\frac{\mathrm{1}}{{n}+\mathrm{1}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{y}\left(\mathrm{1}−{y}^{\frac{\mathrm{1}}{{n}+\mathrm{1}}} \right){y}^{−\frac{{n}}{{n}+\mathrm{1}}} }{\mathrm{1}−{y}}{dy} \\ $$$${U}_{{n}} =\frac{\mathrm{1}}{{n}+\mathrm{1}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{y}^{\frac{\mathrm{1}}{{n}+\mathrm{1}}} −{y}^{\frac{\mathrm{2}}{{n}+\mathrm{1}}} }{\mathrm{1}−{y}}{dy} \\ $$$$=\frac{\mathrm{1}}{{n}+\mathrm{1}}\left[\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{y}^{\frac{\mathrm{1}}{{n}+\mathrm{1}}} −\mathrm{1}}{\mathrm{1}−{y}}{dy}−\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{y}^{\frac{\mathrm{2}}{{n}+\mathrm{1}}} −\mathrm{1}}{\mathrm{1}−{y}}{dy}\right] \\ $$$${By}\:{apply}\:{I} \\ $$$${U}_{{n}} =\frac{\Psi\left(\frac{{n}+\mathrm{3}}{{n}+\mathrm{1}}\right)−\Psi\left(\frac{{n}+\mathrm{2}}{{n}+\mathrm{1}}\right)}{{n}+\mathrm{1}}=\frac{\Psi\left(\mathrm{1}+\frac{\mathrm{2}}{{n}+\mathrm{1}}\right)−\Psi\left(\mathrm{1}+\frac{\mathrm{1}}{{n}+\mathrm{1}}\right)}{{n}+\mathrm{1}} \\ $$$$\Psi\left(\mathrm{1}+{x}\right)−\Psi\left(\mathrm{1}+{y}\right)=\left({y}−{x}\right)\Psi^{\mathrm{1}} \left(\mathrm{1}+{c}\right) \\ $$$${By}\:{apply}\:{mean}\:{value}\: \\ $$$${theorem} \\ $$$$\exists{c}\in\left[{y},{x}\right] \\ $$$$\Rightarrow\Psi\left(\mathrm{1}+\frac{\mathrm{2}}{{n}+\mathrm{1}}\right)−\Psi\left(\mathrm{1}+\frac{\mathrm{1}}{{n}+\mathrm{1}}\right)=\frac{\mathrm{1}}{{n}+\mathrm{1}}\Psi^{\mathrm{1}} \left(\mathrm{1}+{c}\right) \\ $$$${c}\in\left[\frac{\mathrm{1}}{{n}+\mathrm{1}};\frac{\mathrm{2}}{{n}+\mathrm{1}}\right] \\ $$$$\Psi^{\mathrm{1}} \left({z}\right)=\underset{{n}\geqslant\mathrm{0}} {\sum}\frac{\mathrm{1}}{\left({n}+{z}\right)^{\mathrm{2}} } \\ $$$$\Psi^{\left(\mathrm{1}\right)} \left(\mathrm{1}+{c}\right)=\underset{{n}\geqslant\mathrm{0}} {\sum}\frac{\mathrm{1}}{\left(\mathrm{1}+{c}+{n}\right)^{\mathrm{2}} }\leqslant\underset{{n}\geqslant\mathrm{0}} {\sum}\frac{\mathrm{1}}{\left(\mathrm{1}+{n}\right)^{\mathrm{2}} }=\zeta\left(\mathrm{2}\right)=\frac{\pi^{\mathrm{2}} }{\mathrm{6}} \\ $$$$\Rightarrow{U}_{{n}} =\frac{\Psi\left(\mathrm{1}+\frac{\mathrm{2}}{{n}+\mathrm{1}}\right)−\Psi\left(\mathrm{1}+\frac{\mathrm{1}}{{n}+\mathrm{1}}\right)}{{n}+\mathrm{1}} \\ $$$$\Psi\left(\mathrm{1}+\frac{\mathrm{2}}{{n}+\mathrm{1}}\right)−\Psi\left(\mathrm{1}+\frac{\mathrm{1}}{{n}+\mathrm{1}}\right)\leqslant\frac{\mathrm{1}}{{n}+\mathrm{1}}.\Psi^{\left(\mathrm{1}\right)} \left(\mathrm{1}\right)=\frac{\pi^{\mathrm{2}} }{\mathrm{6}\left({n}+\mathrm{1}\right)} \\ $$$$\Rightarrow{U}_{{n}} \leqslant\frac{\pi^{\mathrm{2}} }{\mathrm{6}\left({n}+\mathrm{1}\right)^{\mathrm{2}} }\Rightarrow\Sigma{U}_{{n}} \leqslant\zeta^{\mathrm{2}} \left(\mathrm{2}\right)=\frac{\pi^{\mathrm{4}} }{\mathrm{36}} \\ $$