Menu Close

nature-de-la-serie-n-1-1-n-1-1-n-




Question Number 163463 by SANOGO last updated on 07/Jan/22
nature de la serie  Σ_(n=1) ((1/(n+1))+(1/n))
$${nature}\:{de}\:{la}\:{serie} \\ $$$$\underset{{n}=\mathrm{1}} {\sum}\left(\frac{\mathrm{1}}{{n}+\mathrm{1}}+\frac{\mathrm{1}}{{n}}\right) \\ $$
Answered by Ar Brandon last updated on 07/Jan/22
Σ_(n=1) ^∞ ((1/(n+1))+(1/n))=Σ_(n=1) ^∞ ((1/n)+(1/n))−1  =2H_n −1 →divergente
$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{{n}+\mathrm{1}}+\frac{\mathrm{1}}{{n}}\right)=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{{n}}+\frac{\mathrm{1}}{{n}}\right)−\mathrm{1} \\ $$$$=\mathrm{2}{H}_{{n}} −\mathrm{1}\:\rightarrow\mathrm{divergente} \\ $$
Commented by SANOGO last updated on 07/Jan/22
merci bien
$${merci}\:{bien} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *