Menu Close

nature-ofthe-serie-n-0-ln-cos-1-2-n-




Question Number 82452 by mathmax by abdo last updated on 21/Feb/20
nature ofthe serie Σ_(n=0) ^∞ ln(cos((1/2^n )))
$${nature}\:{ofthe}\:{serie}\:\sum_{{n}=\mathrm{0}} ^{\infty} {ln}\left({cos}\left(\frac{\mathrm{1}}{\mathrm{2}^{{n}} }\right)\right) \\ $$
Commented by mathmax by abdo last updated on 23/Feb/20
cos((1/2^n ))∼1−((((1/2^n ))^2 )/2) =1−(1/2^(2n+1) ) and ln(cos((1/2^n )))∼ln(1−(1/2^(2n+1) ))  ∼−(1/2^(2n+1) )  and Σ_(n=0) ^∞  (1/2^(2n+1) ) converges ⇒Σ_(n=0) ^∞ ln(cos((1/2^n )))  is convergente.
$${cos}\left(\frac{\mathrm{1}}{\mathrm{2}^{{n}} }\right)\sim\mathrm{1}−\frac{\left(\frac{\mathrm{1}}{\mathrm{2}^{{n}} }\right)^{\mathrm{2}} }{\mathrm{2}}\:=\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}{n}+\mathrm{1}} }\:{and}\:{ln}\left({cos}\left(\frac{\mathrm{1}}{\mathrm{2}^{{n}} }\right)\right)\sim{ln}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}{n}+\mathrm{1}} }\right) \\ $$$$\sim−\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}{n}+\mathrm{1}} }\:\:{and}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}{n}+\mathrm{1}} }\:{converges}\:\Rightarrow\sum_{{n}=\mathrm{0}} ^{\infty} {ln}\left({cos}\left(\frac{\mathrm{1}}{\mathrm{2}^{{n}} }\right)\right) \\ $$$${is}\:{convergente}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *