Menu Close

new-attempt-to-solve-qu-37630-dx-x-x-1-x-2-t-x-1-dx-dt-dt-t-1-t-t-1-to-omit-the-roots-a-b-c-must-be-multiplied-with-a-




Question Number 38451 by MJS last updated on 25/Jun/18
new attempt to solve qu. 37630    ∫(dx/( (√x)+(√(x+1))+(√(x+2))))=       [t=x+1 → dx=dt]  =∫(dt/( (√(t−1))+(√t)+(√(t+1))))=          [((to omit the roots)),(((√a)+(√b)+(√c) must be multiplied with)),(((−(√a)−(√b)+(√c))(−(√a)+(√b)−(√c))((√a)−(√b)−(√c)))),(((1/( (√a)+(√b)+(√c)))=((a^(3/2) +b^(3/2) +c^(3/2) +2(√(abc))−((a+b)(√c)+(a+c)(√b)+(b+c)(√a)))/(a^2 +b^2 +c^2 −2(ab+ac+bc))))) ]    =∫((t(√(t−1))+t(√t)+t(√(t+1))+2(√(t−1))−2(√(t+1))−2(√((t−1)t(t+1))))/(3t^2 −4))dt=  =∫((t(√(t−1)))/(3t^2 −4))dt+∫((t(√t))/(3t^2 −4))dt+∫((t(√(t+1)))/(3t^2 −4))dt+2∫((√(t−1))/(3t^2 −4))dt−2∫((√(t+1))/(3t^2 −4))−2∫((√((t−1)t(t+1)))/(3t^2 −4))dt    I think I can solve them all except the last one  so please somebody try  ∫((√((t−1)t(t+1)))/(3t^2 −4))dt=?  I will do the others tomorrow
newattempttosolvequ.37630dxx+x+1+x+2=[t=x+1dx=dt]=dtt1+t+t+1=[toomittherootsa+b+cmustbemultipliedwith(ab+c)(a+bc)(abc)1a+b+c=a3/2+b3/2+c3/2+2abc((a+b)c+(a+c)b+(b+c)a)a2+b2+c22(ab+ac+bc)]=tt1+tt+tt+1+2t12t+12(t1)t(t+1)3t24dt==tt13t24dt+tt3t24dt+tt+13t24dt+2t13t24dt2t+13t242(t1)t(t+1)3t24dtIthinkIcansolvethemallexceptthelastonesopleasesomebodytry(t1)t(t+1)3t24dt=?Iwilldotheotherstomorrow
Commented by math khazana by abdo last updated on 26/Jun/18
changement  t=ch(x)give  ∫  ((√((t−1)t(t+1)))/(3t^2  −4))dt =∫  ((√(sh^2 x chx))/(3ch^2 (x)−4)) sh(x)dx  = ∫   ((sh^2 x(√(chx)))/(3 ch^2 (x)−4)) dx  =_((√(chx)) =u)    ∫  (((u^4 −1)u)/(3u^4 −4))                   (chx=u^2 ⇒x=argch(u^2 )  ⇒  dx= ((2udu)/( (√(u^4 −1)))) ⇒  I = ∫   (((u^4 −1))/(3u^4 −4))  ((2udu)/( (√(u^4 −1))))  = 2∫  ((u(√(u^4 −1)))/(3u^4  −4)) du= 2 ∫  ((u(√(u^4 −1)))/(4(u^4 −1) −u^4 ))du  =_((√(u^4 −1))=x)  2 ∫    (((1+x^2 )^(1/4) x)/(4x^2  −(1+x^2 ))) (x/2)  (1+x^2 )^(−(3/4)) (u^4 =1+x^2 ⇒  u=(1+x^2 )^(1/4)  ⇒ du = (x/2)(1+x^2 )^(−(3/4))   I = ∫      ((x^2   )/( (√(1+x^2 ))(3x^2 −1)))dx =...
changementt=ch(x)give(t1)t(t+1)3t24dt=sh2xchx3ch2(x)4sh(x)dx=sh2xchx3ch2(x)4dx=chx=u(u41)u3u44(chx=u2x=argch(u2)dx=2uduu41I=(u41)3u442uduu41=2uu413u44du=2uu414(u41)u4du=u41=x2(1+x2)14x4x2(1+x2)x2(1+x2)34(u4=1+x2u=(1+x2)14du=x2(1+x2)34I=x21+x2(3x21)dx=
Answered by MJS last updated on 27/Jun/18
∫((t(√(t−1)))/(3t^2 −4))dt=            [u=(√(t−1)) → dt=2(√(t−1))du]  =2∫((u^4 +u^2 )/(3u^4 +6u^2 −1))du=(2/3)∫(1−((3u^2 −1)/(3u^4 +6u^2 −1)))du=  =(2/3)∫du+(2/3)∫(du/(3u^4 +6u^2 −1))−2∫(u^2 /(3u^4 +6u^2 −1))du=         (2/3)∫du=(2/3)u=(2/3)(√(t−1))         (2/3)∫(du/(3u^4 +6u^2 −1))=(2/9)∫(du/(u^4 +2u^2 −(1/3)))=       =(2/9)∫(du/((u^2 +((3−2(√3))/3))(u^2 +((3+2(√3))/3))))=       =(2/9)∫(A/(u^2 +((3−2(√3))/3)))du+(2/9)∫(B/(u^2 +((3+2(√3))/3)))du=       =((√3)/(18))∫(du/(u^2 +((3−2(√3))/3)))−((√3)/(18))∫(du/(u^2 +((3+2(√3))/3)))=                 [∫(dv/(v^2 −p^2 ))=(1/(2p))ln ((v−p)/(v+p)); ∫(dv/(v^2 +q^2 ))=(1/q)arctan (v/q)]       =((√3)/(36))(√(3+2(√3)))ln∣((u−((√3)/3)(√(−3+2(√3))))/(u+((√3)/3)(√(−3+2(√3)))))∣−((√3)/(18))(√(−3+2(√3)))arctan (√(−3+2(√3)))u=       =((√3)/(36))((√(3+2(√3)))ln∣(((√(t−1))−((√3)/3)(√(−3+2(√3))))/( (√(t−1))+((√3)/3)(√(−3+2(√3)))))∣−2(√(−3+2(√3)))arctan (√((−3+2(√3))(t−1))))         −2∫(u^2 /(3u^4 +6u^2 −1))du=−(2/3)∫(u^2 /(u^4 +2u^2 −(1/3)))du=       =−(2/3)∫(u^2 /((u^2 +((3−2(√3))/3))(u^2 +((3+2(√3))/3))))du=       =−(2/3)∫(C/(u^2 +((3−2(√3))/3)))du−(2/3)∫(D/(u^2 +((3+2(√3))/3)))du=       =−((2−(√3))/6)∫(du/(u^2 +((3−2(√3))/3)))−((2+(√3))/6)∫(du/(u^2 +((3+2(√3))/3)))=       =−(1/(12))((√(−3+2(√3)))ln∣((u−((√3)/3)(√(−3+2(√3))))/(u+((√3)/3)(√(−3+2(√3)))))∣+2(√(3+2(√3)))arctan (√(−3+2(√3)))u)=       =−(1/(12))((√(−3+2(√3)))ln∣(((√(t−1))−((√3)/3)(√(−3+2(√3))))/( (√(t−1))+((√3)/3)(√(−3+2(√3)))))∣+2(√(3+2(√3)))arctan (√((−3+2(√3))(t−1))))  =(2/3)(√(t−1))+((√3)/(18))(√(−3+2(√3)))ln∣(((√(t−1))−((√3)/3)(√(−3+2(√3))))/( (√(t−1))+((√3)/3)(√(−3+2(√3)))))∣+((√3)/9)(√(3+2(√3)))arctan (√((−3+2(√3))(t−1)))
tt13t24dt=[u=t1dt=2t1du]=2u4+u23u4+6u21du=23(13u213u4+6u21)du==23du+23du3u4+6u212u23u4+6u21du=23du=23u=23t123du3u4+6u21=29duu4+2u213==29du(u2+3233)(u2+3+233)==29Au2+3233du+29Bu2+3+233du==318duu2+3233318duu2+3+233=[dvv2p2=12plnvpv+p;dvv2+q2=1qarctanvq]=3363+23lnu333+23u+333+233183+23arctan3+23u==336(3+23lnt1333+23t1+333+2323+23arctan(3+23)(t1))2u23u4+6u21du=23u2u4+2u213du==23u2(u2+3233)(u2+3+233)du==23Cu2+3233du23Du2+3+233du==236duu2+32332+36duu2+3+233==112(3+23lnu333+23u+333+23+23+23arctan3+23u)==112(3+23lnt1333+23t1+333+23+23+23arctan(3+23)(t1))=23t1+3183+23lnt1333+23t1+333+23+393+23arctan(3+23)(t1)
Commented by MJS last updated on 27/Jun/18
∫((t(√(t+1)))/(3t^2 −4))dt=       [same procedure as above]  =(2/3)(√(t+1))+((√3)/(18))(√(3+2(√3)))ln∣(((√(t+1))−((√3)/3)(√(3+2(√3))))/( (√(t+1))+((√3)/3)(√(3+2(√3)))))∣−((√3)/9)(√(−3+2(√3)))arctan (√((3+2(√3))(t+1)))
tt+13t24dt=[sameprocedureasabove]=23t+1+3183+23lnt+1333+23t+1+333+23393+23arctan(3+23)(t+1)
Commented by MJS last updated on 27/Jun/18
∫((t(√t))/(3t^2 −4))dt=       [ditto]  =(2/3)(√t)+((√(6(√3)))/(18))ln∣(((√t)−((√(6(√3)))/3))/( (√t)+((√(6(√3)))/3)))∣−((√(6(√3)))/9)arctan ((√(2(√3)t))/2)
tt3t24dt=[ditto]=23t+6318lnt633t+633639arctan23t2
Commented by MJS last updated on 27/Jun/18
2∫((√(t−1))/(3t^2 −4))dt=  =(1/6)(√(−3+2(√3)))ln∣(((√(t−1))−((√3)/3)(√(−3+2(√3))))/( (√(t−1))+((√3)/3)(√(−3+2(√3)))))∣−(1/3)(√(3+2(√3)))arctan (√((−3+2(√3))(t−1)))  −2∫((√(t+1))/(3t^2 −4))dt=  =−(1/6)(√(3+2(√3)))ln∣(((√(t+1))−((√3)/3)(√(3+2(√3))))/( (√(t+1))+((√3)/3)(√(3+2(√3)))))∣−(1/3)(√(−3+2(√3)))arctan (√((3+2(√3))(t+1)))
2t13t24dt==163+23lnt1333+23t1+333+23133+23arctan(3+23)(t1)2t+13t24dt==163+23lnt+1333+23t+1+333+23133+23arctan(3+23)(t+1)
Commented by MJS last updated on 27/Jun/18
∫(dt/( (√(t−1))+(√t)+(√(t+1))))=  =(2/3)((√(t−1))+(√t)+(√(t+1)))+       +((√(6(√3)))/(18))(ln∣(((√(t−1))−((√3)/3)(√(−3+2(√3))))/( (√(t−1))+((√3)/3)(√(−3+2(√3)))))∣+ln∣(((√t)−((√(6(√3)))/3))/( (√t)+((√(6(√3)))/3)))∣−ln∣(((√(t+1))−((√3)/3)(√(−3+2(√3))))/( (√(t+1))+((√3)/3)(√(−3+2(√3)))))∣)+       −((√(6(√3)))/9)(arctan (√((−3+2(√3))(t−1))) +arctan ((√(2(√3)t))/2) +arctan (√((3+2(√3))(t+1))))−       −2∫((√((t−1)t(t+1)))/(3t^2 −4))dt+C  under construction
dtt1+t+t+1==23(t1+t+t+1)++6318(lnt1333+23t1+333+23+lnt633t+633lnt+1333+23t+1+333+23)+639(arctan(3+23)(t1)+arctan23t2+arctan(3+23)(t+1))2(t1)t(t+1)3t24dt+Cunderconstruction
Commented by math khazana by abdo last updated on 27/Jun/18
sir Mjs you are really tired with this itegral  thank youfor thishard work  you are really  patient...
sirMjsyouarereallytiredwiththisitegralthankyouforthishardworkyouarereallypatient
Commented by MJS last updated on 27/Jun/18
this integral is my personal nemesis LOL
thisintegralismypersonalnemesisLOL

Leave a Reply

Your email address will not be published. Required fields are marked *