new-idea-and-solution-to-questions-35178-amp-35195-triangle-ABC-a-BC-b-CA-c-AB-CAB-ABC-BCA-d-a-b-c-a-b-c-a-b-c-a-b-c-put-it-as-this-A-0-0-B-c-0-C- Tinku Tara June 4, 2023 Geometry 0 Comments FacebookTweetPin Question Number 35871 by MJS last updated on 25/May/18 newidea(andsolution)toquestions35178&35195triangle:ABC;a=BC,b=CA,c=AB;α=∠CAB,β=∠ABC,γ=∠BCAd=(a+b+c)(a+b−c)(a−b+c)(−a+b+c)putitasthis:A=(00),B=(c0),C=(−a2+b2+c22cd2c)circumcircle:center=M1=(c2(a2+b2−c2)c2d)radius=R=abcd(calculatedbyintersectionofcircleswithcentersA,B,Corofsymmetry−axesofABandAC)2circlestouchingb,candcircumcircle,onefrominside,theotherfromoutside:center=M2liesony=kxwithk=tanα2M2=(xxtanα2)radius=r1=R−∣M1M2∣=xtanα2(inside)r2=∣M1M2∣−R=xtanα2(outside)(obviouslyanycirclewithcenterM2(x)andtouchingthex−axishasradiusxtanα2andalsoobviouslythetouchingpointof2circlesislocatedonthelineconnectingtheircenters)1.∣M1M2∣=R−xtanα2M1M2=(R−xtanα2)22.∣M1M2∣=R+xtanα2M1M2=(R+xtanα2)2tanα2=sinα2cosα2=1−cosα21+cosα2=1−cosα1+cosα=[cosα=−a2+b2+c22bc]=a2−b2+2bc−c2−a2+b2+2bc+c2=(a+b−c)(a−b+c)(a+b+c)(−a+b+c)M1M2=(m1−m2)2+(n1−n2)2==(c2−x)2+((a2+b2−c2)c2d−xtanα2)2=[aftersometransformationwork]=4bc(a+b+c)(−a+b+c)x2−2bc(b+c)(a+b+c)(−a+b+c)x+a2b2c2d2[a2b2c2d2=R2](R±xtanα2)2=x2tan2α2±2Rxtanα2+R2==(a+b−c)(a−b+c)(a+b+c)(−a+b+c)x2±2abc(a+b+c)(−a+b+c)x+R2sowehave4bc(a+b+c)(−a+b+c)x2−2bc(b+c)(a+b+c)(−a+b+c)x==(a+b−c)(a−b+c)(a+b+c)(−a+b+c)x2±2abc(a+b+c)(−a+b+c)xwhichleadstox3=0(asIexplainedbefore,thepointAcanbeseenasacirclewithradius0stillmeetingtherequirements)x1=2bca+b+c⇒r1=2bc(a+b−c)(a−b+c)(a+b+c)3(−a+b+c)x2=2bc−a+b+c⇒r2=2bc(a+b−c)(a−b+c)(a+b+c)(−a+b+c)3forthecirclescorrespondingwiththepointsBandCjustinterchange{a,b,c}with{b,c,a}and{c,a,b} Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-166943Next Next post: Question-35872 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.