Menu Close

new-idea-and-solution-to-questions-35178-amp-35195-triangle-ABC-a-BC-b-CA-c-AB-CAB-ABC-BCA-d-a-b-c-a-b-c-a-b-c-a-b-c-put-it-as-this-A-0-0-B-c-0-C-




Question Number 35871 by MJS last updated on 25/May/18
new idea (and solution) to questions 35178 &  35195    triangle:  ABC; a=BC, b=CA, c=AB;  α=∠CAB, β=∠ABC, γ=∠BCA  d=(√((a+b+c)(a+b−c)(a−b+c)(−a+b+c)))    put it as this:  A= ((0),(0) ), B= ((c),(0) ), C= ((((−a^2 +b^2 +c^2 )/(2c))),((d/(2c))) )    circumcircle:  center=M_1 = (((c/2)),((((a^2 +b^2 −c^2 )c)/(2d))) )  radius=R=((abc)/d)  (calculated by intersection of circles with  centers A, B, C or of symmetry−axes of  AB and AC)    2 circles touching b, c and circumcircle,  one from inside, the other from outside:  center=M_2  lies on y=kx with k=tan (α/2)  M_2 = ((x),((xtan (α/2))) )  radius=r_1 =R−∣M_1 M_2 ∣=xtan (α/2) (inside)                   r_2 =∣M_1 M_2 ∣−R=xtan (α/2) (outside)    (obviously any circle with center M_2 (x)  and touching the x−axis has radius xtan (α/2)  and also obviously the touching point of  2 circles is located on the line connecting  their centers)    1. ∣M_1 M_2 ∣=R−xtan (α/2)       M_1 M_2 =(R−xtan (α/2))^2   2. ∣M_1 M_2 ∣=R+xtan (α/2)       M_1 M_2 =(R+xtan (α/2))^2     tan (α/2)=((sin (α/2))/(cos (α/2)))=((√((1−cos α)/2))/( (√((1+cos α)/2))))=(√((1−cos α)/(1+cos α)))=            [cos α=((−a^2 +b^2 +c^2 )/(2bc))]  =(√((a^2 −b^2 +2bc−c^2 )/(−a^2 +b^2 +2bc+c^2 )))=(√(((a+b−c)(a−b+c))/((a+b+c)(−a+b+c))))    M_1 M_2 =(m_1 −m_2 )^2 +(n_1 −n_2 )^2 =  =((c/2)−x)^2 +((((a^2 +b^2 −c^2 )c)/(2d))−xtan (α/2))^2 =             [after some transformation work]  =((4bc)/((a+b+c)(−a+b+c)))x^2 −((2bc(b+c))/((a+b+c)(−a+b+c)))x+((a^2 b^2 c^2 )/d^2 )            [((a^2 b^2 c^2 )/d^2 )=R^2 ]    (R±xtan (α/2))^2 =x^2 tan^2  (α/2)±2Rxtan (α/2)+R^2 =  =(((a+b−c)(a−b+c))/((a+b+c)(−a+b+c)))x^2 ±((2abc)/((a+b+c)(−a+b+c)))x+R^2   so we have  ((4bc)/((a+b+c)(−a+b+c)))x^2 −((2bc(b+c))/((a+b+c)(−a+b+c)))x=       =(((a+b−c)(a−b+c))/((a+b+c)(−a+b+c)))x^2 ±((2abc)/((a+b+c)(−a+b+c)))x  which leads to  x_3 =0 (as I explained before, the point A can              be seen as a circle with radius 0 still              meeting the requirements)  x_1 =((2bc)/(a+b+c)) ⇒ r_1 =2bc(√(((a+b−c)(a−b+c))/((a+b+c)^3 (−a+b+c))))  x_2 =((2bc)/(−a+b+c)) ⇒ r_2 =2bc(√(((a+b−c)(a−b+c))/((a+b+c)(−a+b+c)^3 )))    for the circles corresponding with the points  B and C just interchange {a, b, c} with  {b, c, a} and {c, a, b}
newidea(andsolution)toquestions35178&35195triangle:ABC;a=BC,b=CA,c=AB;α=CAB,β=ABC,γ=BCAd=(a+b+c)(a+bc)(ab+c)(a+b+c)putitasthis:A=(00),B=(c0),C=(a2+b2+c22cd2c)circumcircle:center=M1=(c2(a2+b2c2)c2d)radius=R=abcd(calculatedbyintersectionofcircleswithcentersA,B,CorofsymmetryaxesofABandAC)2circlestouchingb,candcircumcircle,onefrominside,theotherfromoutside:center=M2liesony=kxwithk=tanα2M2=(xxtanα2)radius=r1=RM1M2∣=xtanα2(inside)r2=∣M1M2R=xtanα2(outside)(obviouslyanycirclewithcenterM2(x)andtouchingthexaxishasradiusxtanα2andalsoobviouslythetouchingpointof2circlesislocatedonthelineconnectingtheircenters)1.M1M2∣=Rxtanα2M1M2=(Rxtanα2)22.M1M2∣=R+xtanα2M1M2=(R+xtanα2)2tanα2=sinα2cosα2=1cosα21+cosα2=1cosα1+cosα=[cosα=a2+b2+c22bc]=a2b2+2bcc2a2+b2+2bc+c2=(a+bc)(ab+c)(a+b+c)(a+b+c)M1M2=(m1m2)2+(n1n2)2==(c2x)2+((a2+b2c2)c2dxtanα2)2=[aftersometransformationwork]=4bc(a+b+c)(a+b+c)x22bc(b+c)(a+b+c)(a+b+c)x+a2b2c2d2[a2b2c2d2=R2](R±xtanα2)2=x2tan2α2±2Rxtanα2+R2==(a+bc)(ab+c)(a+b+c)(a+b+c)x2±2abc(a+b+c)(a+b+c)x+R2sowehave4bc(a+b+c)(a+b+c)x22bc(b+c)(a+b+c)(a+b+c)x==(a+bc)(ab+c)(a+b+c)(a+b+c)x2±2abc(a+b+c)(a+b+c)xwhichleadstox3=0(asIexplainedbefore,thepointAcanbeseenasacirclewithradius0stillmeetingtherequirements)x1=2bca+b+cr1=2bc(a+bc)(ab+c)(a+b+c)3(a+b+c)x2=2bca+b+cr2=2bc(a+bc)(ab+c)(a+b+c)(a+b+c)3forthecirclescorrespondingwiththepointsBandCjustinterchange{a,b,c}with{b,c,a}and{c,a,b}

Leave a Reply

Your email address will not be published. Required fields are marked *