Menu Close

nice-calculus-0-pi-2-x-3-cot-x-dx-a-16-a-m-n-




Question Number 151954 by mnjuly1970 last updated on 24/Aug/21
      nice...calculus          𝛗 := ∫_0 ^( (Ο€/2)) x^( 3) . cot (x )dx =(a/(16))                     a :=?  m.n...
nice…calculusΟ•:=∫0Ο€2x3.cot(x)dx=a16a:=?m.n…
Answered by Kamel last updated on 24/Aug/21
  Ξ©=∫_0 ^(Ο€/2) x^3 cot(x)dx=^(IBP) βˆ’3∫_0 ^(Ο€/2) x^2 Ln(sin(x))dx  Ln(sin(x))=βˆ’Ln(2)βˆ’Ξ£_(n=1) ^(+∞) ((cos(2nx))/n),   0<x≀(Ο€/2).  ∴ Ξ©=(Ο€^3 /8)Ln(2)+3Ξ£_(n=1) ^(+∞) (1/n)∫_0 ^(Ο€/2) x^2 cos(2nx)dx          =(Ο€^3 /8)Ln(2)+((3Ο€)/2)Ξ£_(n=1) ^(+∞) (1/n)((((βˆ’1)^n )/(2n^2 )))         =(Ο€^3 /8)Ln(2)+((3Ο€)/4)((1/8)ΞΆ(3)βˆ’(ΞΆ(3)βˆ’(1/8)ΞΆ(3)))         =(Ο€^3 /8)Ln(2)βˆ’((9Ο€)/(16))=((Ο€^3 Ln(4)βˆ’9Ο€)/(16))
Ξ©=∫0Ο€2x3cot(x)dx=IBPβˆ’3∫0Ο€2x2Ln(sin(x))dxLn(sin(x))=βˆ’Ln(2)βˆ’βˆ‘+∞n=1cos(2nx)n,0<xβ©½Ο€2.∴Ω=Ο€38Ln(2)+3βˆ‘+∞n=11n∫0Ο€2x2cos(2nx)dx=Ο€38Ln(2)+3Ο€2βˆ‘+∞n=11n((βˆ’1)n2n2)=Ο€38Ln(2)+3Ο€4(18ΞΆ(3)βˆ’(ΞΆ(3)βˆ’18ΞΆ(3)))=Ο€38Ln(2)βˆ’9Ο€16=Ο€3Ln(4)βˆ’9Ο€16
Commented by mnjuly1970 last updated on 25/Aug/21
excellent...
excellent…

Leave a Reply

Your email address will not be published. Required fields are marked *