Question Number 122528 by mnjuly1970 last updated on 17/Nov/20
$$\:\:\:\:\:…{nice}\:\:{calculus}… \\ $$$$\:\:\:\Omega\:=\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} {xsin}\left({x}\right).{cos}\left({x}\right){ln}\left({sin}\left({x}\right).{ln}\left({cos}\left({x}\right)\right){dx}\right. \\ $$$$\overset{???} {=}\:\frac{\pi}{\mathrm{16}}−\frac{\pi^{\mathrm{3}} }{\mathrm{192}}\:\checkmark \\ $$
Answered by mindispower last updated on 18/Nov/20
$$\int_{{a}} ^{{b}} {f}\left({x}\right){dx}=\frac{\mathrm{1}}{\mathrm{2}}\int_{{a}} ^{{b}} \left({f}\left({a}+{b}−{x}\right)+{f}\left({x}\right)\right){dx} \\ $$$$\Leftrightarrow=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} .\frac{\pi}{\mathrm{2}}{sin}\left({x}\right){cos}\left({x}\right){ln}\left({sin}\left({x}\right)\right){ln}\left({cos}\left({x}\right)\right){dx} \\ $$$$\Omega=\frac{\pi}{\mathrm{4}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}\left({x}\right){cos}\left({x}\right){ln}\left({sin}\left({x}\right)\right){ln}\left({cos}\left({x}\right)\right){dx} \\ $$$${f}\left({a},{b}\right)=\frac{\pi}{\mathrm{4}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}\left({x}\right){cos}\left({x}\right){sin}^{{a}} \left({x}\right){cos}^{{b}} \left({x}\right){dx} \\ $$$$\Omega=\frac{\partial^{\mathrm{2}} }{\partial{a}\partial{b}}{f}\left(\mathrm{0},\mathrm{0}\right) \\ $$$${f}=\frac{\pi}{\mathrm{8}}.\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}^{\mathrm{2}\left(\mathrm{1}+\frac{{a}}{\mathrm{2}}\right)−\mathrm{1}} \left({x}\right).{cos}^{\mathrm{2}\left(\mathrm{1}+\frac{{b}}{\mathrm{2}}\right)−\mathrm{1}} \left({x}\right){dx} \\ $$$$=\frac{\pi}{\mathrm{8}}\beta\left(\mathrm{1}+{a},\mathrm{1}+{b}\right) \\ $$$$\frac{\partial}{\partial{b}}\left(\frac{\partial}{\partial{a}}\right){f}=\frac{\pi}{\mathrm{8}}.\frac{\partial}{\partial{b}}.\frac{\mathrm{1}}{\mathrm{2}}\beta\left(\frac{{a}}{\mathrm{2}}+\mathrm{1},\frac{{b}}{\mathrm{2}}+\mathrm{1}\right)\left(\Psi\left(\frac{{a}}{\mathrm{2}}+\mathrm{1}\right)−\Psi\left(\frac{\mathrm{1}}{\mathrm{2}}\left({a}+{b}\right)+\mathrm{2}\right)\right. \\ $$$$=\frac{\pi}{\mathrm{32}}\beta\left(\frac{{a}}{\mathrm{2}}+\mathrm{1},\frac{{b}}{\mathrm{2}}+\mathrm{1}\right)\left(\Psi\left(\frac{{b}}{\mathrm{2}}+\mathrm{1}\right)−\Psi\left(\frac{\mathrm{1}}{\mathrm{2}}\left({a}+{b}\right)+\mathrm{2}\right)\right)\left(\Psi\left(\frac{{a}}{\mathrm{2}}+\mathrm{1}\right)−\Psi\left(\frac{\mathrm{1}}{\mathrm{2}}\left({a}+{b}\right)+\mathrm{2}\right)\right) \\ $$$$−\frac{\pi}{\mathrm{32}}\Psi^{\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{2}}\left({a}+{b}\right)+\mathrm{2}\right)\beta\left(\frac{{a}}{\mathrm{2}}+\mathrm{1},\frac{{b}}{\mathrm{2}}+\mathrm{1}\right) \\ $$$$\Omega=\frac{\pi}{\mathrm{32}}\beta\left(\mathrm{1},\mathrm{1}\right)\left(\Psi\left(\mathrm{1}\right)−\Psi\left(\mathrm{2}\right)\right)^{\mathrm{2}} −\frac{\pi}{\mathrm{32}}\Psi^{\mathrm{1}} \left(\mathrm{2}\right)\beta\left(\mathrm{1},\mathrm{1}\right) \\ $$$$=\frac{\pi}{\mathrm{32}}−\frac{\pi}{\mathrm{32}}\Psi'\left(\mathrm{2}\right) \\ $$$$\Psi^{\mathrm{1}} \left({z}\right)=\underset{{n}\geqslant\mathrm{0}} {\sum}\frac{\mathrm{1}}{\left({n}+{z}\right)^{\mathrm{2}} } \\ $$$$\Psi^{\mathrm{1}} \left(\mathrm{2}\right)=\underset{{n}\geqslant\mathrm{0}} {\sum}\frac{\mathrm{1}}{\left({n}+\mathrm{2}\right)^{\mathrm{2}} }=\underset{{n}\geqslant\mathrm{1}} {\sum}\left(\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\right)−\mathrm{1}=\frac{\pi^{\mathrm{2}} }{\mathrm{6}}−\mathrm{1} \\ $$$$=\frac{\pi}{\mathrm{32}}−\frac{\pi}{\mathrm{32}}\left(\frac{\pi^{\mathrm{2}} }{\mathrm{6}}−\mathrm{1}\right) \\ $$$$=\frac{\boldsymbol{\pi}}{\mathrm{16}}−\frac{\pi^{\mathrm{3}} }{\mathrm{192}} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Commented by mnjuly1970 last updated on 18/Nov/20
$${thank}\:{you}\:{sir}\:{power}\:… \\ $$$$\:{by}\:{using}\:{the}\:{euler}\:{beta}\:{function} \\ $$$$.{grateful}\:.{sincerely}\:{yours}.{m}.{n} \\ $$
Commented by mindispower last updated on 18/Nov/20
$${withe}\:{pleasur}\:{nice}\:{day} \\ $$