Menu Close

nice-calculus-0-pi-2-xsin-x-cos-x-ln-sin-x-ln-cos-x-dx-pi-16-pi-3-192-




Question Number 122528 by mnjuly1970 last updated on 17/Nov/20
     ...nice  calculus...     Ω =∫_0 ^( (π/2)) xsin(x).cos(x)ln(sin(x).ln(cos(x))dx  =^(???)  (π/(16))−(π^3 /(192)) ✓
nicecalculusΩ=0π2xsin(x).cos(x)ln(sin(x).ln(cos(x))dx=???π16π3192
Answered by mindispower last updated on 18/Nov/20
∫_a ^b f(x)dx=(1/2)∫_a ^b (f(a+b−x)+f(x))dx  ⇔=(1/2)∫_0 ^(π/2) .(π/2)sin(x)cos(x)ln(sin(x))ln(cos(x))dx  Ω=(π/4)∫_0 ^(π/2) sin(x)cos(x)ln(sin(x))ln(cos(x))dx  f(a,b)=(π/4)∫_0 ^(π/2) sin(x)cos(x)sin^a (x)cos^b (x)dx  Ω=(∂^2 /(∂a∂b))f(0,0)  f=(π/8).2∫_0 ^(π/2) sin^(2(1+(a/2))−1) (x).cos^(2(1+(b/2))−1) (x)dx  =(π/8)β(1+a,1+b)  (∂/∂b)((∂/∂a))f=(π/8).(∂/∂b).(1/2)β((a/2)+1,(b/2)+1)(Ψ((a/2)+1)−Ψ((1/2)(a+b)+2)  =(π/(32))β((a/2)+1,(b/2)+1)(Ψ((b/2)+1)−Ψ((1/2)(a+b)+2))(Ψ((a/2)+1)−Ψ((1/2)(a+b)+2))  −(π/(32))Ψ^1 ((1/2)(a+b)+2)β((a/2)+1,(b/2)+1)  Ω=(π/(32))β(1,1)(Ψ(1)−Ψ(2))^2 −(π/(32))Ψ^1 (2)β(1,1)  =(π/(32))−(π/(32))Ψ′(2)  Ψ^1 (z)=Σ_(n≥0) (1/((n+z)^2 ))  Ψ^1 (2)=Σ_(n≥0) (1/((n+2)^2 ))=Σ_(n≥1) ((1/n^2 ))−1=(π^2 /6)−1  =(π/(32))−(π/(32))((π^2 /6)−1)  =(𝛑/(16))−(π^3 /(192))
abf(x)dx=12ab(f(a+bx)+f(x))dx⇔=120π2.π2sin(x)cos(x)ln(sin(x))ln(cos(x))dxΩ=π40π2sin(x)cos(x)ln(sin(x))ln(cos(x))dxf(a,b)=π40π2sin(x)cos(x)sina(x)cosb(x)dxΩ=2abf(0,0)f=π8.20π2sin2(1+a2)1(x).cos2(1+b2)1(x)dx=π8β(1+a,1+b)b(a)f=π8.b.12β(a2+1,b2+1)(Ψ(a2+1)Ψ(12(a+b)+2)=π32β(a2+1,b2+1)(Ψ(b2+1)Ψ(12(a+b)+2))(Ψ(a2+1)Ψ(12(a+b)+2))π32Ψ1(12(a+b)+2)β(a2+1,b2+1)Ω=π32β(1,1)(Ψ(1)Ψ(2))2π32Ψ1(2)β(1,1)=π32π32Ψ(2)Ψ1(z)=n01(n+z)2Ψ1(2)=n01(n+2)2=n1(1n2)1=π261=π32π32(π261)=π16π3192
Commented by mnjuly1970 last updated on 18/Nov/20
thank you sir power ...   by using the euler beta function  .grateful .sincerely yours.m.n
thankyousirpowerbyusingtheeulerbetafunction.grateful.sincerelyyours.m.n
Commented by mindispower last updated on 18/Nov/20
withe pleasur nice day
withepleasurniceday

Leave a Reply

Your email address will not be published. Required fields are marked *