Menu Close

nice-calculus-calculate-0-1-x-2-1-x-2-x-dx-m-n-1970-




Question Number 122290 by mnjuly1970 last updated on 15/Nov/20
     ...  nice  calculus...     calculate ::     Ω=∫_0 ^( 1) x^2 (ψ(1+x)−ψ(2−x))dx=???              .m.n.1970.
nicecalculuscalculate::Ω=01x2(ψ(1+x)ψ(2x))dx=???.m.n.1970.
Commented by Dwaipayan Shikari last updated on 15/Nov/20
2−log(2π)
2log(2π)
Answered by mnjuly1970 last updated on 16/Nov/20
   solution:        Φ=∫_0 ^( 1) x^2 ψ(2−x)dx=^(∫_a ^( b) f(x)=∫_a ^( b) f(a+b−x)dx) ∫_0 ^( 1) (1−x)^2 ψ(1+x)dx  ∴ Ω=∫_0 ^( 1) x^2 (ψ(1+x))dx−∫_0 ^( 1) (1−x)^2 ψ(1+x)dx  =∫_0 ^( 1) (2x−1)ψ(1+x)dx=[(2x−1)lnΓ(x+1)]_0 ^1 −2∫_0 ^( 1) lnΓ(x+1)dx  =−2∫_0 ^( 1) ln(x)−2∫_0 ^( 1) ln(Γ(x))dx  =2−2((1/2)ln(2π))=2−ln(2π)  ✓            ..m.n..
solution:Φ=01x2ψ(2x)dx=abf(x)=abf(a+bx)dx01(1x)2ψ(1+x)dxΩ=01x2(ψ(1+x))dx01(1x)2ψ(1+x)dx=01(2x1)ψ(1+x)dx=[(2x1)lnΓ(x+1)]01201lnΓ(x+1)dx=201ln(x)201ln(Γ(x))dx=22(12ln(2π))=2ln(2π)..m.n..

Leave a Reply

Your email address will not be published. Required fields are marked *