Question Number 127649 by mnjuly1970 last updated on 31/Dec/20

Answered by mindispower last updated on 31/Dec/20
![f(t)=∫_0 ^∞ arctan((t/x))sin(x)dx t∈]0,1] f(0)=0 f′(t)=∫_0 ^∞ ((xsin(x))/(x^2 +t^2 ))dx let f(z)=((zsin(z))/(z^2 +t^2 )),Im(z)>0 pol(f)=z∈{it} ∫_(−∞) ^∞ f(z)dz=2∫_0 ^∞ f(z)dz= ∫_(−∞) ^∞ f(z)dz=Im∫_(−∞) ^∞ ((ze^(iz) )/(z^2 +t^2 ))dz=Im(2iπRes(((ze^(iz) )/(z^2 +t^2 ))),z=it} =Im(2iπ((ite^(−t) )/(2it)))=πe^(−t) f′(t)=(π/2)e^(−t) f(t)=−((πe^(−t) )/2)+c f(0)=0⇒c=(π/2) f(t)=(π/2)(1−e^(−t) ) ∅=f(1)=πe^(−(1/2)) (((e^(1/2) −e^(−(1/2)) )/2))=((πsh((1/2)))/( (√e)))≈0.9923](https://www.tinkutara.com/question/Q127661.png)
Commented by mnjuly1970 last updated on 31/Dec/20
![]thak you sir power extraorinary..as always...](https://www.tinkutara.com/question/Q127667.png)
Answered by mathmax by abdo last updated on 01/Jan/21

Commented by mnjuly1970 last updated on 01/Jan/21

Commented by mathmax by abdo last updated on 01/Jan/21
