Menu Close

nice-calculus-calculate-0-arctan-1-x-sin-x-dx-




Question Number 127649 by mnjuly1970 last updated on 31/Dec/20
             ... nice  calculus...      calculate::       ∅=∫_0 ^( ∞) arctan((1/x)).sin(x)dx=?
nicecalculuscalculate::=0arctan(1x).sin(x)dx=?
Answered by mindispower last updated on 31/Dec/20
f(t)=∫_0 ^∞ arctan((t/x))sin(x)dx  t∈]0,1]  f(0)=0  f′(t)=∫_0 ^∞ ((xsin(x))/(x^2 +t^2 ))dx  let f(z)=((zsin(z))/(z^2 +t^2 )),Im(z)>0  pol(f)=z∈{it}  ∫_(−∞) ^∞ f(z)dz=2∫_0 ^∞ f(z)dz=  ∫_(−∞) ^∞ f(z)dz=Im∫_(−∞) ^∞ ((ze^(iz) )/(z^2 +t^2 ))dz=Im(2iπRes(((ze^(iz) )/(z^2 +t^2 ))),z=it}  =Im(2iπ((ite^(−t) )/(2it)))=πe^(−t)   f′(t)=(π/2)e^(−t)   f(t)=−((πe^(−t) )/2)+c  f(0)=0⇒c=(π/2)  f(t)=(π/2)(1−e^(−t) )  ∅=f(1)=πe^(−(1/2)) (((e^(1/2) −e^(−(1/2)) )/2))=((πsh((1/2)))/( (√e)))≈0.9923
f(t)=0arctan(tx)sin(x)dxt]0,1]f(0)=0f(t)=0xsin(x)x2+t2dxletf(z)=zsin(z)z2+t2,Im(z)>0pol(f)=z{it}f(z)dz=20f(z)dz=f(z)dz=Imzeizz2+t2dz=Im(2iπRes(zeizz2+t2),z=it}=Im(2iπitet2it)=πetf(t)=π2etf(t)=πet2+cf(0)=0c=π2f(t)=π2(1et)=f(1)=πe12(e12e122)=πsh(12)e0.9923
Commented by mnjuly1970 last updated on 31/Dec/20
]thak you sir power  extraorinary..as always...
]thakyousirpowerextraorinary..asalways
Answered by mathmax by abdo last updated on 01/Jan/21
Φ=∫_0 ^∞  arctan((1/x))sinx dx ⇒Φ=∫_0 ^∞ ((π/2)−arctan(x))sinxdx  letf(a)=∫_0 ^∞ ((π/2)−arctan(ax))sinx dx  with a>0  f^′ (a)=∫_0 ^∞ −((xsinx)/(1+a^2 x^2 ))dx  =_(ax =t)   −(1/a)∫_0 ^∞   ((tsin((t/a)))/(t^2  +1))(dt/a)  =−(1/a^2 )∫_0 ^∞  ((tsin((t/a)))/(t^2  +1))dt =−(1/(2a^2 ))∫_(−∞) ^(+∞) ((tsin((t/a)))/(t^2  +1))dt  =−(1/(2a^2 )) Im(∫_(−∞) ^(+∞) ((ze^((iz)/a) )/(z^2  +1))dz)  we have  ∫_(−∞) ^(+∞)  ((ze^((iz)/a) )/(z^2  +1))dz =2iπRes(f,i) =2iπ×((ie^(−(1/a)) )/(2i)) =iπ e^(−(1/a))  ⇒  f^′ (a) =−(π/(2a^2 )) e^(−(1/a))  ⇒f(a)=−(π/2)∫ (e^(−(1/a)) /a^2 )da +K  =K−(π/2) e^(−(1/a))    we have lim_(a→+∞ ) f(a)=0=K−(π/2) ⇒K=(π/2) ⇒  f(a)=(π/2)(1−e^(−(1/a)) )  so  Φ=∫_0 ^∞  arctan((1/x))sinx dx =f(1)=(π/2)(1−e^(−1) )  =(π/2)(1−(1/e))
Φ=0arctan(1x)sinxdxΦ=0(π2arctan(x))sinxdxletf(a)=0(π2arctan(ax))sinxdxwitha>0f(a)=0xsinx1+a2x2dx=ax=t1a0tsin(ta)t2+1dta=1a20tsin(ta)t2+1dt=12a2+tsin(ta)t2+1dt=12a2Im(+zeizaz2+1dz)wehave+zeizaz2+1dz=2iπRes(f,i)=2iπ×ie1a2i=iπe1af(a)=π2a2e1af(a)=π2e1aa2da+K=Kπ2e1awehavelima+f(a)=0=Kπ2K=π2f(a)=π2(1e1a)soΦ=0arctan(1x)sinxdx=f(1)=π2(1e1)=π2(11e)
Commented by mnjuly1970 last updated on 01/Jan/21
 thanks alot sir max ..
thanksalotsirmax..
Commented by mathmax by abdo last updated on 01/Jan/21
you are welcome sir
youarewelcomesir

Leave a Reply

Your email address will not be published. Required fields are marked *