Question Number 129180 by mnjuly1970 last updated on 13/Jan/21
$$\:\:\:\:\:\:\:\:\:\:\:\:…\:{nice}\:\:\:{calculus}… \\ $$$$\:\:\:{calculate}:: \\ $$$$\:\:\:\:\:\:\phi\overset{???} {=}\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{4}}} \frac{{dx}}{\left({sin}\left({x}\right)+{cos}\left({x}\right)+\sqrt{\mathrm{2}}\:\right)^{\mathrm{2}} } \\ $$$$ \\ $$
Commented by Dwaipayan Shikari last updated on 13/Jan/21
$${Integral}\:{doesn}'{t}\:{Converge} \\ $$
Commented by mnjuly1970 last updated on 13/Jan/21
$$\:\:{thank}\:{you}\:{for}\:{your}\:{attantion}. \\ $$$${i}\:{changed}\:{the}\:{interval}… \\ $$
Answered by Dwaipayan Shikari last updated on 13/Jan/21
$$\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \frac{{dx}}{\left({cos}\left(\frac{\pi}{\mathrm{4}}−{x}\right)+\mathrm{1}\right)^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \frac{\mathrm{1}}{\left(\mathrm{1}+{cosx}\right)^{\mathrm{2}} }{dx}\:\:\:\:\:\:\:{tan}\frac{{x}}{\mathrm{2}}={t} \\ $$$$=\int_{\mathrm{0}} ^{\sqrt{\mathrm{2}}−\mathrm{1}} \frac{\mathrm{1}}{\left(\mathrm{1}+\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }\right)^{\mathrm{2}} }.\frac{\mathrm{1}}{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$$$=\int_{\mathrm{0}} ^{\sqrt{\mathrm{2}}−\mathrm{1}} \frac{\mathrm{1}+{t}^{\mathrm{2}} }{\mathrm{4}}{dt}=\frac{\sqrt{\mathrm{2}}−\mathrm{1}}{\mathrm{4}}+\frac{\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)^{\mathrm{3}} }{\mathrm{12}}=\frac{\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{3}}−\frac{\mathrm{5}}{\mathrm{6}} \\ $$$$ \\ $$
Commented by mnjuly1970 last updated on 13/Jan/21
$${very}\:{nice}\:{as}\:{always}..{thx}… \\ $$
Answered by MJS_new last updated on 13/Jan/21
$$\int\frac{{dx}}{\left(\mathrm{sin}\:{x}\:+\mathrm{cos}\:{x}\:+\sqrt{\mathrm{2}}\right)^{\mathrm{2}} }= \\ $$$$\:\:\:\:\:\left[{t}={x}+\frac{\mathrm{5}\pi}{\mathrm{4}}\:\rightarrow{dx}={dt}\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{dt}}{\left(\mathrm{1}−\mathrm{sin}\:{t}\right)^{\mathrm{2}} }= \\ $$$$\:\:\:\:\:\left[{u}=\mathrm{tan}\:\frac{{t}}{\mathrm{2}}\:\rightarrow\:{dt}=\frac{\mathrm{2}{du}}{{u}^{\mathrm{2}} +\mathrm{1}}\right] \\ $$$$=\int\frac{{u}^{\mathrm{2}} +\mathrm{1}}{\left({u}−\mathrm{1}\right)^{\mathrm{4}} }{du}=−\frac{\mathrm{3}{u}^{\mathrm{2}} −\mathrm{3}{u}+\mathrm{2}}{\mathrm{3}\left({u}−\mathrm{1}\right)^{\mathrm{3}} } \\ $$$$\Rightarrow\:\mathrm{answer}\:\mathrm{is}\:−\frac{\mathrm{5}}{\mathrm{6}}+\frac{\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{3}} \\ $$
Commented by mnjuly1970 last updated on 13/Jan/21
$${thanks}\:{alot}\:{mr}\:{mjs}.{grateful}.. \\ $$