Menu Close

nice-calculus-calculate-0-tanh-pix-x-1-x-2-dx-




Question Number 126476 by mnjuly1970 last updated on 20/Dec/20
        ...nice  calculus...    calculate ::        Ω=∫_0 ^( ∞)  ((tanh(πx))/(x(1+x^2 ))) dx=?
nicecalculuscalculate::Ω=0tanh(πx)x(1+x2)dx=?
Answered by mathmax by abdo last updated on 21/Dec/20
Ψ =∫_0 ^∞  ((th(πx))/(x(1+x^2 ))) dx ⇒Ψ =_(πx=t)   ∫_0 ^∞  ((th(t))/((t/π)(1+(t^2 /π^2 ))))(dt/π)  =π^2  ∫_0 ^∞  ((th(t))/(t(t^2  +π^2 )))dt =(π^2 /2)∫_(−∞) ^(+∞)  ((th(t))/(t(t^2  +π^2 )))dt let ϕ(z)=((th(z))/(z(z^2  +π^2 )))  residus give ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{Res(ϕ,o) +Res(ϕ,iπ)}  Res(ϕ,o)=0  Res(ϕ,iπ) =((th(iπ))/(iπ(2iπ))) =−(1/(2π^2 ))th(iπ) and  th(iπ) =((sh(iπ))/(ch(iπ))) =((e^(iπ) −e^(−iπ) )/(e^(iπ) +e^(−iπ) ))=((isin(π))/(cos(π)))=0 ⇒Ψ=0
Ψ=0th(πx)x(1+x2)dxΨ=πx=t0th(t)tπ(1+t2π2)dtπ=π20th(t)t(t2+π2)dt=π22+th(t)t(t2+π2)dtletφ(z)=th(z)z(z2+π2)residusgive+φ(z)dz=2iπ{Res(φ,o)+Res(φ,iπ)}Res(φ,o)=0Res(φ,iπ)=th(iπ)iπ(2iπ)=12π2th(iπ)andth(iπ)=sh(iπ)ch(iπ)=eiπeiπeiπ+eiπ=isin(π)cos(π)=0Ψ=0
Answered by mathmax by abdo last updated on 21/Dec/20
if you have another way post it sir mnj
ifyouhaveanotherwaypostitsirmnj

Leave a Reply

Your email address will not be published. Required fields are marked *