Menu Close

nice-calculus-calculate-0-x-n-1-cos-x-2-n-dx-




Question Number 123454 by mnjuly1970 last updated on 25/Nov/20
            ...nice  calculus...       calculate :::           Ω =^(???) ∫_0 ^( ∞) (√x) Π_(n=1) ^∞ (cos((x/2^n )))dx
nicecalculuscalculate:::Ω=???0xn=1(cos(x2n))dx
Answered by Olaf last updated on 25/Nov/20
sin2θ = 2sinθcosθ  cosθ = ((sin2θ)/(2sinθ))  Let θ = (x/2^n )  cos((x/2^n )) = ((sin((x/2^(n−1) )))/(2sin((x/2^n ))))  Π_(n=1) ^p cos((x/2^n )) = Π_(n=1) ^p ((sin((x/2^(n−1) )))/(2sin((x/2^n )))) = ((sinx)/(2^p sin((x/2^p ))))  2^p sin((x/2^p )) ∼_∞  2^p ×(x/2^p ) = x  ⇒ Π_(n=1) ^∞ cos((x/2^n )) = ((sinx)/x)  Ω = ∫_0 ^∞ (√x)Π_(n=1) ^∞ cos((x/2^n ))dx  Ω = ∫_0 ^∞ (√x).((sinx)/x).dx  Ω = ∫_0 ^∞ ((sinx)/( (√x)))dx  Let t = (√x), dt = (dx/(2(√x)))  Ω = 2∫_0 ^∞ sin(t^2 )dt  With ∫_0 ^∞ sin(t^2 )dt = (1/2)(√(π/2))  (Fresnel integral)  ⇒ Ω =  (√(π/2))
sin2θ=2sinθcosθcosθ=sin2θ2sinθLetθ=x2ncos(x2n)=sin(x2n1)2sin(x2n)pn=1cos(x2n)=pn=1sin(x2n1)2sin(x2n)=sinx2psin(x2p)2psin(x2p)2p×x2p=xn=1cos(x2n)=sinxxΩ=0xn=1cos(x2n)dxΩ=0x.sinxx.dxΩ=0sinxxdxLett=x,dt=dx2xΩ=20sin(t2)dtWith0sin(t2)dt=12π2(Fresnelintegral)Ω=π2
Commented by mnjuly1970 last updated on 26/Nov/20
thank you mr olaf.excellent
thankyoumrolaf.excellent

Leave a Reply

Your email address will not be published. Required fields are marked *