nice-calculus-calculate-0-x-n-1-cos-x-2-n-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 123454 by mnjuly1970 last updated on 25/Nov/20 …nicecalculus…calculate:::Ω=???∫0∞x∏∞n=1(cos(x2n))dx Answered by Olaf last updated on 25/Nov/20 sin2θ=2sinθcosθcosθ=sin2θ2sinθLetθ=x2ncos(x2n)=sin(x2n−1)2sin(x2n)∏pn=1cos(x2n)=∏pn=1sin(x2n−1)2sin(x2n)=sinx2psin(x2p)2psin(x2p)∼∞2p×x2p=x⇒∏∞n=1cos(x2n)=sinxxΩ=∫0∞x∏∞n=1cos(x2n)dxΩ=∫0∞x.sinxx.dxΩ=∫0∞sinxxdxLett=x,dt=dx2xΩ=2∫0∞sin(t2)dtWith∫0∞sin(t2)dt=12π2(Fresnelintegral)⇒Ω=π2 Commented by mnjuly1970 last updated on 26/Nov/20 thankyoumrolaf.excellent Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Lim-x-4x-3-2x-2-5x-4-9x-3-4x-2-9-Next Next post: advanced-calculus-prove-n-1-H-n-n-3-pi-4-72-note-H-n-1-1-2-1-n- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.