Menu Close

nice-calculus-calculate-1-ln-x-4-2x-2-2-x-x-2-1-dx-




Question Number 127958 by mnjuly1970 last updated on 03/Jan/21
           ...nice  calculus...     calculate      Ω=∫_1 ^( ∞) ((ln(x^4 −2x^2 +2))/(x(√(x^2 −1)) )) dx=?
nicecalculuscalculateΩ=1ln(x42x2+2)xx21dx=?
Answered by Dwaipayan Shikari last updated on 03/Jan/21
∫_1 ^∞ ((log(x^4 −2x^2 +2))/(x(√(x^2 −1))))dx  =∫_0 ^(π/2) ((log(sec^4 θ−2sec^2 θ+2))/(secθtanθ))secθtanθ  =∫_0 ^(π/2) log(1−2cos^2 θ+2cos^4 θ)−4∫_0 ^(π/2) log(cosθ)dθ  =∫_0 ^(π/2) log(1−(1/2)sin^2 2θ)+2πlog(2)  =∫_0 ^(π/2) log(cos^2 2θ+(1/2)sin^2 2θ)+2πlog(2)  =πlog(((1+(1/( (√2))))/2))+πlog(4)=πlog(2+(√2))  Lemma  ∫_0 ^(π/2) log(a^2 cos^2 θ+b^2 sin^2 θ)=πlog(((a+b)/2))
1log(x42x2+2)xx21dx=0π2log(sec4θ2sec2θ+2)secθtanθsecθtanθ=0π2log(12cos2θ+2cos4θ)40π2log(cosθ)dθ=0π2log(112sin22θ)+2πlog(2)=0π2log(cos22θ+12sin22θ)+2πlog(2)=πlog(1+122)+πlog(4)=πlog(2+2)Lemma0π2log(a2cos2θ+b2sin2θ)=πlog(a+b2)

Leave a Reply

Your email address will not be published. Required fields are marked *