Menu Close

nice-calculus-evaluate-0-1-dx-x-x-3-1-2-




Question Number 129988 by mnjuly1970 last updated on 21/Jan/21
                ... nice  calculus ...    evaluate:      φ = ∫_0 ^( 1) (dx/((x−x^3 )^(1/2) )) =?
nicecalculusevaluate:ϕ=01dx(xx3)12=?
Answered by Dwaipayan Shikari last updated on 21/Jan/21
∫_0 ^1 (1/( (√x).(√(1+x^2 ))))            x^2 =u⇒1=(1/(2x)).(du/dx)  =(1/2)∫_0 ^1 u^(−(3/4)) (1+u)^(−(1/2)) (1−u)^0 du    _2 F_1 (a,b;c;−1)=((Γ(c))/(Γ(c−b)Γ(b)))∫_0 ^1 t^(b−1) (1−t)^(c−b−1) (1+t)^(−a) dt  c−b=1    (Here)  a=(1/2)    b=(1/4)      c=(5/4)  So  the integral is   4 _2 F_1 ((1/2),(1/4);(5/4),−1)
011x.1+x2x2=u1=12x.dudx=1201u34(1+u)12(1u)0du2F1(a,b;c;1)=Γ(c)Γ(cb)Γ(b)01tb1(1t)cb1(1+t)adtcb=1(Here)a=12b=14c=54Sotheintegralis42F1(12,14;54,1)
Answered by Dwaipayan Shikari last updated on 21/Jan/21
∫_0 ^1 (1/((x−x^3 )^(1/2) ))dx=(1/2)∫_0 ^1 u^(−(3/4)) (1−u)^(−(1/2)) du=((Γ((1/4))Γ((1/2)))/(2Γ((3/4))))  =((√(π^3 /2))/(Γ^2 ((3/4))))
011(xx3)12dx=1201u34(1u)12du=Γ(14)Γ(12)2Γ(34)=π32Γ2(34)
Commented by mnjuly1970 last updated on 22/Jan/21
thanks alot...
thanksalot
Answered by mathmax by abdo last updated on 21/Jan/21
Φ=∫_0 ^1  (dx/((x−x^3 )^(1/2) )) ⇒Φ =∫_0 ^1  (dx/( (√x)(1−x^2 )^(1/2) ))dx =_((√x)=t)   ∫_0 ^1  ((2tdt)/(t(1−t^4 )^(1/2) ))  =2∫_0 ^1  (dt/((1−t^4 )^(1/2) )) =_(t=u^(1/4) )    2×(1/4)∫_0 ^1  (1−u)^(−(1/2))  u^((1/4)−1)  du  =(1/2)∫_0 ^1  u^((1/4)−1) (1−u)^((1/2)−1)  du=(1/2)B((1/4),(1/2))  =(1/2)((Γ((1/4)).Γ((1/2)))/(Γ((1/4)+(1/2))))=((√π)/2)((Γ((1/4)))/(Γ((3/4))))
Φ=01dx(xx3)12Φ=01dxx(1x2)12dx=x=t012tdtt(1t4)12=201dt(1t4)12=t=u142×1401(1u)12u141du=1201u141(1u)121du=12B(14,12)=12Γ(14).Γ(12)Γ(14+12)=π2Γ(14)Γ(34)
Commented by mnjuly1970 last updated on 22/Jan/21
grateful sir max ...
gratefulsirmax

Leave a Reply

Your email address will not be published. Required fields are marked *