Menu Close

nice-calculus-Evaluate-0-1-sin-ln-x-ln-x-ln-2-x-dx-Ans-ln-2-pi-4-1-




Question Number 126465 by mnjuly1970 last updated on 20/Dec/20
            ... nice  calculus...       Evaluate ...          φ = ∫_0 ^( 1) ((sin(ln(x))−ln(x))/(ln^2 (x)))dx             Ans :: ln((√2) )+(π/4) −1 ...
nicecalculusEvaluateϕ=01sin(ln(x))ln(x)ln2(x)dxAns::ln(2)+π41
Commented by talminator2856791 last updated on 22/Dec/20
 do you have more difficult question than this
doyouhavemoredifficultquestionthanthis
Answered by mindispower last updated on 23/Dec/20
−ln(x)=t  =∫_0 ^∞ ((t−sin(t))/t^2 )e^(−t)   sin(t)−t=Σ_(k≥1) (((−1)^k t^(2k+1) )/((2k+1)!))  =Σ_(k≥1) ∫_0 ^∞ (((−1)^k )/((2k+1)!))t^(2k−1) e^(−t) dt  =Σ_(k≥1) (((−1)^k )/((2k+1)!))Γ(2k)  =Σ_(k≥1) (((−1)^k )/(2k(2k+1)))=Σ_(k≥1) (((−1)^k )/(2k))−Σ_(k≥1) (((−1)^k )/(2k+1))  =(1/2)Σ_(k≥1) (−1)^k ∫_0 ^1 x^(k−1)   =(1/2)∫_0 ^1 (1/x)Σ_(k≥1) (−x)^k dx−Σ_(k≥1) ∫_0 ^1 (−1)^k x^(2k) dx  =−(1/2)∫_0 ^1 (1/(1+x))dx−∫_0 ^1 ((−x^2 )/(1+x^2 ))dx  =−(1/2)ln(2)+∫_0 ^1 dx+∫_0 ^1 (dx/(1+x^2 ))  =1+(π/4)−ln((√2))
ln(x)=t=0tsin(t)t2etsin(t)t=k1(1)kt2k+1(2k+1)!=k10(1)k(2k+1)!t2k1etdt=k1(1)k(2k+1)!Γ(2k)=k1(1)k2k(2k+1)=k1(1)k2kk1(1)k2k+1=12k1(1)k01xk1=12011xk1(x)kdxk101(1)kx2kdx=120111+xdx01x21+x2dx=12ln(2)+01dx+01dx1+x2=1+π4ln(2)
Commented by mnjuly1970 last updated on 24/Dec/20
thanks a lot..
thanksalot..

Leave a Reply

Your email address will not be published. Required fields are marked *