Question Number 125336 by mnjuly1970 last updated on 10/Dec/20

Answered by Dwaipayan Shikari last updated on 10/Dec/20

Commented by mnjuly1970 last updated on 10/Dec/20

Commented by Dwaipayan Shikari last updated on 10/Dec/20

Answered by Olaf last updated on 10/Dec/20
![Let I_n = ∫_0 ^1 x^n lnxdx, n∈N I_n = [(x^(n+1) /(n+1))lnx]_0 ^1 −∫_0 ^1 (x^(n+1) /(n+1)).(dx/x) I_n = −(1/(n+1))∫_0 ^1 x^n dx I_n = −(1/(n+1))[(x^(n+1) /(n+1))]_0 ^1 = −(1/((n+1)^2 )) φ = ∫_0 ^1 x^2 lnxln(1−x)dx φ = ∫_0 ^1 x^2 lnxΣ_(n=1) ^∞ (x^n /n)dx φ = Σ_(n=1) ^∞ (1/n)∫_0 ^1 x^(n+2) lnxdx φ = Σ_(n=1) ^∞ (I_(n+2) /n) φ = −Σ_(n=1) ^∞ (1/(n(n+3)^2 )) φ = −(1/9)Σ_(n=1) ^∞ [(1/n)−(1/(n+3))−(3/((n+3)^2 ))] φ = −(1/9)Σ_(n=1) ^∞ [(1/n)−(1/(n+3))]+(1/3)Σ_(n=1) ^∞ (1/((n+3)^2 )) φ = −(1/9)[1+(1/2)+(1/3)]+(1/3)[Σ_(n=1) ^∞ (1/n^2 )−(1+(1/4)+(1/9))] φ = −(1/9)[((11)/6)]+(1/3)[(π^2 /6)−((49)/(36))] φ = (π^2 /(18))−((71)/(108))](https://www.tinkutara.com/question/Q125349.png)
Commented by mnjuly1970 last updated on 10/Dec/20
