Menu Close

nice-calculus-evaluate-0-1-x-2-ln-x-ln-1-x-dx-




Question Number 125336 by mnjuly1970 last updated on 10/Dec/20
              ... nice  calculus ...    evaluate :     φ=∫_(0 ) ^( 1) x^2 ln(x).ln(1−x)dx =?
nicecalculusevaluate:ϕ=01x2ln(x).ln(1x)dx=?
Answered by Dwaipayan Shikari last updated on 10/Dec/20
−Σ_(n≥1) ^∞ (1/n)∫_0 ^1 x^(2+n) log(x)dx      log(x)=t  =−Σ_(n≥1) ^∞ (1/n)∫_(−∞) ^0 te^((n+3)t) dt      (n+3)t=−u  =−Σ_(n≥1) ^∞ (1/n)∫_0 ^∞ (u/((n+3)^2 ))e^(−u) du  =Σ^∞ (1/(n(n+3)^2 ))Γ(2)=(1/3)Σ^∞ (1/((n+3)))((1/n)−(1/((n+3))))  =(1/9)Σ^∞ (1/n)−(1/(n+3))−(1/3)Σ^∞ (1/((n+3)^2 ))  =(1/9)(1+(1/2)+(1/3))−(1/3)((π^2 /6)−1−(1/4)−(1/9))  =((11)/(54))+((49)/(108))−(π^2 /(18))=((71)/(108))−(π^2 /(18))
n11n01x2+nlog(x)dxlog(x)=t=n11n0te(n+3)tdt(n+3)t=u=n11n0u(n+3)2eudu=1n(n+3)2Γ(2)=131(n+3)(1n1(n+3))=191n1n+3131(n+3)2=19(1+12+13)13(π2611419)=1154+49108π218=71108π218
Commented by mnjuly1970 last updated on 10/Dec/20
  very nice solution.  thanks alot...
verynicesolution.thanksalot
Commented by Dwaipayan Shikari last updated on 10/Dec/20
With pleasure sir!
Withpleasuresir!
Answered by Olaf last updated on 10/Dec/20
Let I_n  = ∫_0 ^1 x^n lnxdx, n∈N  I_n  = [(x^(n+1) /(n+1))lnx]_0 ^1 −∫_0 ^1 (x^(n+1) /(n+1)).(dx/x)  I_n  = −(1/(n+1))∫_0 ^1 x^n dx  I_n  = −(1/(n+1))[(x^(n+1) /(n+1))]_0 ^1  = −(1/((n+1)^2 ))  φ = ∫_0 ^1 x^2 lnxln(1−x)dx  φ = ∫_0 ^1 x^2 lnxΣ_(n=1) ^∞ (x^n /n)dx  φ = Σ_(n=1) ^∞ (1/n)∫_0 ^1 x^(n+2) lnxdx  φ = Σ_(n=1) ^∞ (I_(n+2) /n)  φ = −Σ_(n=1) ^∞ (1/(n(n+3)^2 ))  φ = −(1/9)Σ_(n=1) ^∞ [(1/n)−(1/(n+3))−(3/((n+3)^2 ))]  φ = −(1/9)Σ_(n=1) ^∞ [(1/n)−(1/(n+3))]+(1/3)Σ_(n=1) ^∞ (1/((n+3)^2 ))  φ = −(1/9)[1+(1/2)+(1/3)]+(1/3)[Σ_(n=1) ^∞ (1/n^2 )−(1+(1/4)+(1/9))]  φ = −(1/9)[((11)/6)]+(1/3)[(π^2 /6)−((49)/(36))]  φ = (π^2 /(18))−((71)/(108))
LetIn=01xnlnxdx,nNIn=[xn+1n+1lnx]0101xn+1n+1.dxxIn=1n+101xndxIn=1n+1[xn+1n+1]01=1(n+1)2ϕ=01x2lnxln(1x)dxϕ=01x2lnxn=1xnndxϕ=n=11n01xn+2lnxdxϕ=n=1In+2nϕ=n=11n(n+3)2ϕ=19n=1[1n1n+33(n+3)2]ϕ=19n=1[1n1n+3]+13n=11(n+3)2ϕ=19[1+12+13]+13[n=11n2(1+14+19)]ϕ=19[116]+13[π264936]ϕ=π21871108
Commented by mnjuly1970 last updated on 10/Dec/20
grateful mr olaf...
gratefulmrolaf

Leave a Reply

Your email address will not be published. Required fields are marked *