nice-calculus-evaluate-0-ln-x-x-2-1-3-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 127539 by mnjuly1970 last updated on 30/Dec/20 …nicecalculus…evaluate:::Φ=∫0∞ln(x)(x2+1)3dx=? Answered by Lordose last updated on 30/Dec/20 u=ln(x)⇒du=dxxdv=1(x2+1)3dx⇒v=Ostrograski18(x(3x2+5)(x2+1)2+3tan−1(x))Φ=(18∣x(3x2+5)ln(x)(x2+1)2∣0∞−18∫0∞3x2+5(x2+1)2dx−38∫0∞tan−1(x)xdxΦ=−(18(2π)+0)=−π4 Answered by mathmax by abdo last updated on 01/Jan/21 Φ=−12Re(ΣRes(f,ai)withf(z)=ln2z(z2+1)3wehavef(z)=ln2z(z−i)3(z+i)3sothepolesofφare+−i(triples)Res(f,i)=limz→i1(3−1)!{(z−i)3f(z)}(2)=limz→i12{ln2z(z+i)3}(2)=12limz→i{2lnzz(z+i)3−3(z+i)2ln2z(z+i)6}(1)=12limz→i{2lnz(z+i)z−3ln2z(z+i)4}(1)=12limz→i{2(z+i)lnz−3zln2zz(z+i)4}(1)=12limz→i(2lnz+2(z+i)z−3ln2z−6lnz)z(z+i)4−((z+i)4+4z(z+i)3)2(z+i)lnz−2zln2zz2(z+i)8….becontinued… Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-62002Next Next post: Question-193073 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.