Menu Close

nice-calculus-evaluate-0-ln-x-x-2-1-3-dx-




Question Number 127539 by mnjuly1970 last updated on 30/Dec/20
             ...nice   calculus...     evaluate :::       Φ=∫_0 ^( ∞) ((ln(x))/((x^2 +1)^3 )) dx=?
nicecalculusevaluate:::Φ=0ln(x)(x2+1)3dx=?
Answered by Lordose last updated on 30/Dec/20
  u = ln(x) ⇒ du = (dx/x)  dv = (1/((x^2 +1)^3 ))dx ⇒ v =^(Ostrograski)  (1/8)(((x(3x^2 +5))/((x^2 +1)^2 )) + 3tan^(−1) (x))  Φ = ((1/8)∣((x(3x^2 +5)ln(x))/((x^2 +1)^2 ))∣_0 ^∞  − (1/8)∫_0 ^( ∞) ((3x^2 +5)/((x^2 +1)^2 ))dx − (3/8)∫_0 ^( ∞) ((tan^(−1) (x))/x)dx  Φ = −((1/8)(2π) +  0) = −(π/4)
u=ln(x)du=dxxdv=1(x2+1)3dxv=Ostrograski18(x(3x2+5)(x2+1)2+3tan1(x))Φ=(18x(3x2+5)ln(x)(x2+1)201803x2+5(x2+1)2dx380tan1(x)xdxΦ=(18(2π)+0)=π4
Answered by mathmax by abdo last updated on 01/Jan/21
Φ =−(1/2)Re(Σ Res(f,a_i ) with f(z) =((ln^2 z)/((z^2  +1)^3 )) we have   f(z)=((ln^2 z)/((z−i)^3 (z+i)^3 )) so the poles of ϕ are +^− i(triples)  Res(f,i) =lim_(z→i)   (1/((3−1)!)){(z−i)^3 f(z)}^((2))   =lim_(z→i)   (1/2){((ln^2 z)/((z+i)^3 ))}^((2))  =(1/2)lim_(z→i)   {((((2lnz)/z)(z+i)^3 −3(z+i)^2 ln^2 z)/((z+i)^6 ))}^((1))   =(1/2)lim_(z→i)     {((((2lnz(z+i))/z)−3ln^2 z)/((z+i)^4 ))}^((1))   =(1/2)lim_(z→i)   {((2(z+i)lnz−3zln^2 z)/(z(z+i)^4 ))}^((1))   =(1/2)lim_(z→i)     (((2lnz +((2(z+i))/z)−3ln^2 z−6lnz)z(z+i)^4 −((z+i)^4 +4z(z+i)^3 )2(z+i)lnz−2zln^2 z)/(z^2 (z+i)^8 ))  ....be continued...
Φ=12Re(ΣRes(f,ai)withf(z)=ln2z(z2+1)3wehavef(z)=ln2z(zi)3(z+i)3sothepolesofφare+i(triples)Res(f,i)=limzi1(31)!{(zi)3f(z)}(2)=limzi12{ln2z(z+i)3}(2)=12limzi{2lnzz(z+i)33(z+i)2ln2z(z+i)6}(1)=12limzi{2lnz(z+i)z3ln2z(z+i)4}(1)=12limzi{2(z+i)lnz3zln2zz(z+i)4}(1)=12limzi(2lnz+2(z+i)z3ln2z6lnz)z(z+i)4((z+i)4+4z(z+i)3)2(z+i)lnz2zln2zz2(z+i)8.becontinued

Leave a Reply

Your email address will not be published. Required fields are marked *