Menu Close

nice-calculus-evaluate-0-sin-x-e-x-1-dx-




Question Number 130693 by mnjuly1970 last updated on 28/Jan/21
              ... nice   calculus...     evaluate ::         =∫_0 ^( ∞) ((sin(x))/(e^x −1)) dx =??                  ....................
nicecalculusevaluate::=0sin(x)ex1dx=??..
Answered by mnjuly1970 last updated on 28/Jan/21
      ∫_0 ^( ∞) ((sin(x))/(e^x −1))dx=(1/(2i))∫_0 ^( ∞) ((e^(ix) −e^(−ix) )/(e^x −1))dx  =(1/(2i))∫_0 ^( ∞) ((e^(ix−x) −e^(−ix−x) )/(1−e^(−x) )) dx  =(1/(2i))∫_0 ^( ∞) {Σ_(n=0) ^∞ e^(ix−x−nx) −e^(−ix−x−nx) }dx  =(1/(2i))Σ_(n=0) ^∞ {(e^(x(i−1−n)) /(i−n−1))+(e^(−x(i+1+n)) /(i+1+n))}_0 ^∞   =((−1)/(2i))Σ_(n=0) ^∞ {(1/(i−(n+1)))+(1/(i+(n+1)))}  =((−1)/(2i))Σ_(n=1) ^∞ (1/(i−n))+(1/(i+n))=((−1)/(2i))Σ_(n=1) ^∞ ((2i)/(i^2 −n^2 ))  =Σ_(n=1) ^∞ (1/(n^2 +1)) =^(⟨upsilon  function⟩)   ((πcoth(π) −1)/3)
0sin(x)ex1dx=12i0eixeixex1dx=12i0eixxeixx1exdx=12i0{n=0eixxnxeixxnx}dx=12in=0{ex(i1n)in1+ex(i+1+n)i+1+n}0=12in=0{1i(n+1)+1i+(n+1)}=12in=11in+1i+n=12in=12ii2n2=n=11n2+1=upsilonfunctionπcoth(π)13
Answered by Dwaipayan Shikari last updated on 28/Jan/21
(1/(2i))Σ_(n=1) ^∞ ∫_0 ^∞ e^(−nx+ix) −e^(−nx−ix) dx  =Σ_(n=1) ^∞ (1/(n^2 +1))=(1/2)(πcoth(π)−1)
12in=10enx+ixenxixdx=n=11n2+1=12(πcoth(π)1)
Answered by mathmax by abdo last updated on 28/Jan/21
Φ=∫_0 ^∞  ((sinx)/(e^x −1))dx ⇒Φ=∫_0 ^∞  ((e^(−x) sinx)/(1−e^(−x) ))dx  =∫_0 ^∞ e^(−x) sinxΣ_(n=0) ^∞  e^(−nx) dx  =Σ_(n=0) ^∞  ∫_0 ^∞ e^(−(n+1)x) sinx dx =Σ_(n=0) ^∞  u_n   u_n =Im(∫_0 ^∞  e^(−(n+1)x) e^(ix) dx)but  ∫_0 ^∞  e^((−(n+1)+i)x) dx =(1/(−(n+1)+i))e^(−(n+1)+i)x) ]_0 ^∞   =(1/(n+1−i)) =((n+1+i)/((n+1)^2  +1)) ⇒u_n =(1/((n+1)^2  +1)) ⇒Φ=Σ_(n=0) ^∞ (1/((n+1)^2 +1))  =Σ_(n=1) ^∞  (1/(n^2  +1)) ,the value of this serie is known see the platform
Φ=0sinxex1dxΦ=0exsinx1exdx=0exsinxn=0enxdx=n=00e(n+1)xsinxdx=n=0unun=Im(0e(n+1)xeixdx)but0e((n+1)+i)xdx=1(n+1)+ie(n+1)+i)x]0=1n+1i=n+1+i(n+1)2+1un=1(n+1)2+1Φ=n=01(n+1)2+1=n=11n2+1,thevalueofthisserieisknownseetheplatform

Leave a Reply

Your email address will not be published. Required fields are marked *