nice-calculus-evaluate-0-sin-x-e-x-1-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 130693 by mnjuly1970 last updated on 28/Jan/21 …nicecalculus…evaluate::=∫0∞sin(x)ex−1dx=??……………….. Answered by mnjuly1970 last updated on 28/Jan/21 ∫0∞sin(x)ex−1dx=12i∫0∞eix−e−ixex−1dx=12i∫0∞eix−x−e−ix−x1−e−xdx=12i∫0∞{∑∞n=0eix−x−nx−e−ix−x−nx}dx=12i∑∞n=0{ex(i−1−n)i−n−1+e−x(i+1+n)i+1+n}0∞=−12i∑∞n=0{1i−(n+1)+1i+(n+1)}=−12i∑∞n=11i−n+1i+n=−12i∑∞n=12ii2−n2=∑∞n=11n2+1=⟨upsilonfunction⟩πcoth(π)−13 Answered by Dwaipayan Shikari last updated on 28/Jan/21 12i∑∞n=1∫0∞e−nx+ix−e−nx−ixdx=∑∞n=11n2+1=12(πcoth(π)−1) Answered by mathmax by abdo last updated on 28/Jan/21 Φ=∫0∞sinxex−1dx⇒Φ=∫0∞e−xsinx1−e−xdx=∫0∞e−xsinx∑n=0∞e−nxdx=∑n=0∞∫0∞e−(n+1)xsinxdx=∑n=0∞unun=Im(∫0∞e−(n+1)xeixdx)but∫0∞e(−(n+1)+i)xdx=1−(n+1)+ie−(n+1)+i)x]0∞=1n+1−i=n+1+i(n+1)2+1⇒un=1(n+1)2+1⇒Φ=∑n=0∞1(n+1)2+1=∑n=1∞1n2+1,thevalueofthisserieisknownseetheplatform Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Mr-Rahmat-decided-to-create-a-password-with-the-form-numbers-and-letterse-intermittntly-intermittent-can-also-be-letters-and-numbers-intermittently-but-no-nmbers-and-letters-are-the-same-It-cNext Next post: ordinary-differential-equation-find-the-general-solution-dy-dx-e-y-cos-x-cot-x- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.