Question Number 125390 by mnjuly1970 last updated on 10/Dec/20
$$\:\:\:\:\:\:\:\:{nice}\:\:{calculus}… \\ $$$$\:\:\:\:\:{evaluate}\:::::\curvearrowright \\ $$$$\:\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\infty} \frac{\sqrt{{x}}\:{tan}^{−\mathrm{1}} \left({x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}=??? \\ $$
Answered by mathmax by abdo last updated on 11/Dec/20
$$\mathrm{I}\:=\int_{\mathrm{0}} ^{\infty} \:\frac{\sqrt{\mathrm{x}}\mathrm{arctan}\left(\mathrm{x}\right)}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx}\:\:\mathrm{changement}\:\sqrt{\mathrm{x}}=\mathrm{t}\:\mathrm{give}\:\mathrm{x}=\mathrm{t}^{\mathrm{2}} \:\Rightarrow \\ $$$$\mathrm{I}=\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{t}\:\mathrm{arctan}\left(\mathrm{t}^{\mathrm{2}} \right)}{\mathrm{1}+\mathrm{t}^{\mathrm{4}} }\left(\mathrm{2t}\right)\mathrm{dt}\:=\mathrm{2}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{t}^{\mathrm{2}} }{\mathrm{1}+\mathrm{t}^{\mathrm{4}} }\mathrm{arctan}\left(\mathrm{t}^{\mathrm{2}} \right)\mathrm{dt} \\ $$$$=\int_{−\infty} ^{+\infty} \:\frac{\mathrm{t}^{\mathrm{2}} \:\mathrm{arctan}\left(\mathrm{t}^{\mathrm{2}} \right)}{\mathrm{t}^{\mathrm{4}} \:+\mathrm{1}}\mathrm{dt}\:\:\mathrm{its}\:\mathrm{clear}\:\mathrm{that}\:\mathrm{I}\:\mathrm{is}\:\mathrm{convergent}\:\mathrm{let} \\ $$$$\varphi\left(\mathrm{z}\right)=\frac{\mathrm{z}^{\mathrm{2}} \:\mathrm{arctan}\left(\mathrm{z}^{\mathrm{2}} \right)}{\mathrm{z}^{\mathrm{4}} \:+\mathrm{1}}\:\:\mathrm{we}\:\mathrm{have}\:\varphi\left(\mathrm{z}\right)=\frac{\mathrm{z}^{\mathrm{2}} \mathrm{arctan}\left(\mathrm{z}^{\mathrm{2}} \right)}{\left(\mathrm{z}^{\mathrm{2}} −\mathrm{i}\right)\left(\mathrm{z}^{\mathrm{2}} \:+\mathrm{i}\right)} \\ $$$$=\frac{\mathrm{z}^{\mathrm{2}} \:\mathrm{arctan}\left(\mathrm{z}^{\mathrm{2}} \right)}{\left(\mathrm{z}−\mathrm{e}^{\frac{\mathrm{i}\pi}{\mathrm{4}}} \right)\left(\mathrm{z}+\mathrm{e}^{\frac{\mathrm{i}\pi}{\mathrm{4}}} \right)\left(\mathrm{z}−\mathrm{e}^{−\frac{\mathrm{i}\pi}{\mathrm{4}}} \right)\left(\mathrm{z}+\mathrm{e}^{−\frac{\mathrm{i}\pi}{\mathrm{4}}} \right)} \\ $$$$\int_{−\infty} ^{+\infty} \:\varphi\left(\mathrm{z}\right)\mathrm{dz}\:=\mathrm{2i}\pi\left\{\mathrm{Res}\left(\varphi,\mathrm{e}^{\frac{\mathrm{i}\pi}{\mathrm{4}}} \right)+\mathrm{Res}\left(\varphi,−\mathrm{e}^{−\frac{\mathrm{i}\pi}{\mathrm{4}}} \right)\right\} \\ $$$$\mathrm{Res}\left(\varphi,\mathrm{e}^{\frac{\mathrm{i}\pi}{\mathrm{4}}} \right)\:=\frac{\mathrm{iarctan}\left(\mathrm{i}\right)}{\mathrm{2e}^{\frac{\mathrm{i}\pi}{\mathrm{4}}} \left(\mathrm{2i}\right)}\:=\frac{\mathrm{1}}{\mathrm{4}}\mathrm{e}^{−\frac{\mathrm{i}\pi}{\mathrm{4}}} \:\mathrm{arctan}\left(\mathrm{i}\right) \\ $$$$\mathrm{Res}\left(\varphi,−\mathrm{e}^{−\frac{\mathrm{i}\pi}{\mathrm{4}}} \right)\:=\frac{−\mathrm{iarctan}\left(−\mathrm{i}\right)}{\left(−\mathrm{2i}\right)\left(−\mathrm{2e}^{−\frac{\mathrm{i}\pi}{\mathrm{4}}} \right)}\:=\frac{\mathrm{1}}{\mathrm{4}}\mathrm{e}^{\frac{\mathrm{i}\pi}{\mathrm{4}}} \:\mathrm{arctan}\left(\mathrm{i}\right)\:\Rightarrow \\ $$$$\int_{−\infty} ^{+\infty} \:\varphi\left(\mathrm{z}\right)\mathrm{dz}\:=\frac{\mathrm{2i}\pi}{\mathrm{4}}\:\mathrm{arctan}\left(\mathrm{i}\right)\left\{\mathrm{e}^{\frac{\mathrm{i}\pi}{\mathrm{4}}} \:+\mathrm{e}^{−\frac{\mathrm{i}\pi}{\mathrm{4}}} \right\} \\ $$$$=\frac{\mathrm{i}\pi}{\mathrm{2}}\mathrm{arctan}\left(\mathrm{i}\right)×\mathrm{2cos}\left(\frac{\pi}{\mathrm{4}}\right)\:=\mathrm{i}\pi\mathrm{arctan}\left(\mathrm{i}\right)×\frac{\sqrt{\mathrm{2}}}{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{I}=\frac{\mathrm{i}\pi}{\:\sqrt{\mathrm{2}}}\:\mathrm{arctan}\left(\mathrm{i}\right)\:\:\mathrm{rest}\:\mathrm{to}\:\mathrm{determine}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{arctan}\left(\mathrm{i}\right)… \\ $$$$\mathrm{be}\:\mathrm{continued}… \\ $$
Answered by mnjuly1970 last updated on 11/Dec/20