nice-calculus-Evaluate-I-0-1-ln-1-x-x-dx-1-x-2- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 128977 by mnjuly1970 last updated on 11/Jan/21 …nicecalculus…Evaluate:::I:=∫01ln(1x−x)dx1+x2=?∗………………………………∗ Answered by abderrahimelmerrouni last updated on 11/Jan/21 3 Answered by mathmax by abdo last updated on 12/Jan/21 I=∫01ln(1−x2)−lnx1+x2dx=∫01ln(1−x2)1+x2dx−∫01lnx1+x2dx∫01lnx1+x2dx=∫01lnx∑n=0∞(−1)nx2ndx=∑n=0∞(−1)n∫01x2nlnxdx∫01x2nlnxdx=[x2n+12n+1lnx]01−∫01x2n2n+1dx=−1(2n+1)2⇒∫01lnx1+x2dx=−∑n=0∞(−1)n(2n+1)2=−k(katalanconstant)∫01ln(1−x2)1+x2dx=∫01ln(1−x)1+x2dx+∫01ln(1+x)1+x2dx=H+K∫01ln(1−x)1+x2dx=∫01ln(1−x)∑n=0∞(−1)nx2ndx=∑n=0∞(−1)n∫01x2nln(1−x)dxvn=∫01x2nln(1−x)dx=[x2n+1−12n+1ln(1−x)]01−12n+1∫01(x2n+1−1)×−11−xdx=−12n+1∫01x2n+1−1x−1dx=−12n+1∫01(1+x+x2+…+x2n)dx=−12n+1∫01∑k=02nxkdx=−12n+1∑k=02n[xk+1k+1]01=−12n+1∑k=02n1k+1=−12n+1H2n+1⇒∫01ln(1−x)1+x2dx=−∑n=0∞(−1)n2n+1H2n+1K=∫01ln(1+x)1+x2dx=x=tanθ∫0π4ln(1+tanθ)1+tan2θ(1+tan2θ)dθ=∫0π4ln(1+tanθ)dθthevalueofthisintegralisknownseetheplatform… Answered by Lordose last updated on 12/Jan/21 Ω=∫01ln(1x−x)dx1+x2=∫01ln(1−x2)1+x2dx−∫01ln(x)1+x2dxΩ=Φ−ΨΦ=∑∞n=11n∫01x2n1+x2dx=∑∞n=11n∫01x2n−x2n+21−x4x=u14⇒dx=14u−34duΦ=u=x414∑∞n=11n∫01u2n−34−u2n−141−udu=14∑∞n=11n(H(2n−14)−H(2n−34))Φ=14∑∞n=11n(ψ0(n2+34)−ψ0(n2+14))Ψ=∫01ln(x)1+x2dx=−GΩ=14∑∞n=1ψ0(n2+34)n−14∑∞n=1ψ0(n2+14)n+G=πlog(2)4 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: solve-the-following-equation-xtan-y-x-ysec-2-y-x-dx-xsec-2-y-x-dy-0-Next Next post: x-x-1-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.