Menu Close

nice-calculus-Evaluate-I-0-1-ln-1-x-x-dx-1-x-2-




Question Number 128977 by mnjuly1970 last updated on 11/Jan/21
              ... nice  calculus...      Evaluate :::        I:=∫_0 ^( 1) ln((1/x) − x)(dx/(1+x^2 )) =?         ∗....................................∗
nicecalculusEvaluate:::I:=01ln(1xx)dx1+x2=?
Answered by abderrahimelmerrouni last updated on 11/Jan/21
3
3
Answered by mathmax by abdo last updated on 12/Jan/21
I=∫_0 ^1  ((ln(1−x^2 )−lnx)/(1+x^2 ))dx =∫_0 ^1  ((ln(1−x^2 ))/(1+x^2 ))dx−∫_0 ^1  ((lnx)/(1+x^2 ))dx  ∫_0 ^1  ((lnx)/(1+x^2 ))dx =∫_0 ^1 lnxΣ_(n=0) ^∞ (−1)^n  x^(2n)  dx =Σ_(n=0) ^∞  (−1)^n  ∫_0 ^1  x^(2n) lnxdx  ∫_0 ^1  x^(2n) lnxdx =[(x^(2n+1) /(2n+1))lnx]_0 ^1 −∫_0 ^1  (x^(2n) /(2n+1))dx  =−(1/((2n+1)^2 )) ⇒∫_0 ^1  ((lnx)/(1+x^2 ))dx =−Σ_(n=0) ^∞  (((−1)^n )/((2n+1)^2 ))=−k(katalan constant)  ∫_0 ^1  ((ln(1−x^2 ))/(1+x^2 ))dx =∫_0 ^1  ((ln(1−x))/(1+x^2 ))dx +∫_0 ^1  ((ln(1+x))/(1+x^2 ))dx=H+K  ∫_0 ^1  ((ln(1−x))/(1+x^2 ))dx =∫_0 ^1  ln(1−x)Σ_(n=0) ^∞ (−1)^n  x^(2n) dx  =Σ_(n=0) ^∞  (−1)^n  ∫_0 ^1 x^(2n) ln(1−x)dx  v_n =∫_0 ^1  x^(2n) ln(1−x)dx =[((x^(2n+1) −1)/(2n+1))ln(1−x)]_0 ^1 −(1/(2n+1))∫_0 ^1 (x^(2n+1) −1)×((−1)/(1−x))dx  =−(1/(2n+1))∫_0 ^1  ((x^(2n+1) −1)/(x−1))dx =−(1/(2n+1))∫_0 ^1 (1+x+x^2  +...+x^(2n) )dx  =−(1/(2n+1))∫_0 ^1  Σ_(k=0) ^(2n)  x^k  dx =−(1/(2n+1))Σ_(k=0) ^(2n)  [(x^(k+1) /(k+1))]_0 ^1   =−(1/(2n+1))Σ_(k=0) ^(2n)  (1/(k+1))=−(1/(2n+1))H_(2n+1)  ⇒∫_0 ^1  ((ln(1−x))/(1+x^2 ))dx  =−Σ_(n=0) ^∞  (((−1)^n )/(2n+1))H_(2n+1)   K=∫_0 ^1  ((ln(1+x))/(1+x^2 ))dx =_(x=tanθ)   ∫_0 ^(π/4)  ((ln(1+tanθ))/(1+tan^2 θ))(1+tan^2 θ)dθ  =∫_0 ^(π/4)  ln(1+tanθ)dθ  the value of this integral is known see the platform...
I=01ln(1x2)lnx1+x2dx=01ln(1x2)1+x2dx01lnx1+x2dx01lnx1+x2dx=01lnxn=0(1)nx2ndx=n=0(1)n01x2nlnxdx01x2nlnxdx=[x2n+12n+1lnx]0101x2n2n+1dx=1(2n+1)201lnx1+x2dx=n=0(1)n(2n+1)2=k(katalanconstant)01ln(1x2)1+x2dx=01ln(1x)1+x2dx+01ln(1+x)1+x2dx=H+K01ln(1x)1+x2dx=01ln(1x)n=0(1)nx2ndx=n=0(1)n01x2nln(1x)dxvn=01x2nln(1x)dx=[x2n+112n+1ln(1x)]0112n+101(x2n+11)×11xdx=12n+101x2n+11x1dx=12n+101(1+x+x2++x2n)dx=12n+101k=02nxkdx=12n+1k=02n[xk+1k+1]01=12n+1k=02n1k+1=12n+1H2n+101ln(1x)1+x2dx=n=0(1)n2n+1H2n+1K=01ln(1+x)1+x2dx=x=tanθ0π4ln(1+tanθ)1+tan2θ(1+tan2θ)dθ=0π4ln(1+tanθ)dθthevalueofthisintegralisknownseetheplatform
Answered by Lordose last updated on 12/Jan/21
  Ω = ∫_0 ^( 1) ln((1/x) − x)(dx/(1+x^2 )) = ∫_0 ^( 1) ((ln(1−x^2 ))/(1+x^2 ))dx − ∫_0 ^( 1) ((ln(x))/(1+x^2 ))dx  Ω = Φ − Ψ  Φ = Σ_(n=1) ^∞ (1/n)∫_0 ^( 1) (x^(2n) /(1+x^2 ))dx = Σ_(n=1) ^∞ (1/n)∫_0 ^( 1) ((x^(2n) −x^(2n+2) )/(1−x^4 ))  x = u^(1/4)  ⇒ dx = (1/4)u^(−(3/4)) du  Φ =^(u=x^4 ) (1/4)Σ_(n=1) ^∞ (1/n)∫_0 ^( 1) ((u^((2n−3)/4) − u^((2n−1)/4) )/(1−u))du = (1/4)Σ_(n=1) ^∞ (1/n)(H_((((2n−1)/4))) −H_((((2n−3)/4))) )  Φ = (1/4)Σ_(n=1) ^∞ (1/n)(𝛙^0 ((n/2)+(3/4)) − 𝛙^0 ((n/2)+(1/4)))  Ψ = ∫_0 ^( 1) ((ln(x))/(1+x^2 ))dx = −G  Ω = (1/4)Σ_(n=1) ^∞ ((𝛙^0 ((n/2)+(3/4)))/n) − (1/4)Σ_(n=1) ^∞ ((𝛙^0 ((n/2)+(1/4)))/n) + G = ((πlog(2))/4)
Ω=01ln(1xx)dx1+x2=01ln(1x2)1+x2dx01ln(x)1+x2dxΩ=ΦΨΦ=n=11n01x2n1+x2dx=n=11n01x2nx2n+21x4x=u14dx=14u34duΦ=u=x414n=11n01u2n34u2n141udu=14n=11n(H(2n14)H(2n34))Φ=14n=11n(ψ0(n2+34)ψ0(n2+14))Ψ=01ln(x)1+x2dx=GΩ=14n=1ψ0(n2+34)n14n=1ψ0(n2+14)n+G=πlog(2)4

Leave a Reply

Your email address will not be published. Required fields are marked *