Menu Close

nice-calculus-evaluate-lim-x-0-1-x-ln-1-x-x-x-1-




Question Number 124548 by mnjuly1970 last updated on 04/Dec/20
                ...nice  calculus...         evaluate :::  lim_(x→0) {(1/x)[((ln(Γ(1+x))/x)−ψ(x+1)]}=?
nicecalculusevaluate:::limx0{1x[ln(Γ(1+x)xψ(x+1)]}=?
Answered by mindispower last updated on 04/Dec/20
ln(Γ(1+x))=f(x)  f(x)=f(0)+f′(0)x+((f′′(0)x^2 )/2)+o(x^2 )  f(0)=0,f′(0)=Ψ(1),f′′(0)=Ψ^1 (1)  Ψ(x+1)=Ψ(1)+Ψ^1 (1)x+o(x)  ((ln(Γ(1+x)))/x)−Ψ(x+1)=((xΨ(1)+(x^2 /2)Ψ^1 (1)+o(x^2 ))/x)−Ψ(1)−Ψ^1 (1)x+o(x)  =−((Ψ^1 (1))/2)x+o(x)  lim_(x→0) {(1/x)[((ln(Γ(1+x)))/x)−Ψ(1+x)]}=lim_(x→0) (1/x).((−Ψ(1))/2)x+o(x)  =lim_(x→0) −((Ψ^1 (1))/2)+o(1)=−((Ψ^1 (1))/2)  Ψ^1 (z)=Σ_(j≥0) (1/((j+z)^2 ))⇒Ψ^1 (1)=Σ_(j≥0) (1/((1+j)^2 ))=(π^2 /6)  we get −(π^2 /(12))
ln(Γ(1+x))=f(x)f(x)=f(0)+f(0)x+f(0)x22+o(x2)f(0)=0,f(0)=Ψ(1),f(0)=Ψ1(1)Ψ(x+1)=Ψ(1)+Ψ1(1)x+o(x)ln(Γ(1+x))xΨ(x+1)=xΨ(1)+x22Ψ1(1)+o(x2)xΨ(1)Ψ1(1)x+o(x)=Ψ1(1)2x+o(x)limx0{1x[ln(Γ(1+x))xΨ(1+x)]}=limx01x.Ψ(1)2x+o(x)=limx0Ψ1(1)2+o(1)=Ψ1(1)2Ψ1(z)=j01(j+z)2Ψ1(1)=j01(1+j)2=π26wegetπ212
Commented by mnjuly1970 last updated on 04/Dec/20
bravo mr mindspower   maclauren expansion of  Γ(x+1)  grateful...
bravomrmindspowermaclaurenexpansionofΓ(x+1)grateful

Leave a Reply

Your email address will not be published. Required fields are marked *