Menu Close

nice-calculus-Evaluate-n-0-1-n-2n-1-




Question Number 123763 by mnjuly1970 last updated on 28/Nov/20
             ... nice   calculus ...       Evaluate ::    Σ_(n=0) ^∞  (((−1)^n )/(2n+1)) =???
nicecalculusEvaluate::n=0(1)n2n+1=???
Answered by Snail last updated on 28/Nov/20
Σ_(n=0) ^∞ (((−1)^n x^(2n+1) )/(2n+1))=tan^(−1) (x)    Σ_(n=0) ^∞ (((−1)^n )/(2n+1))=tan^(−1) (1)=π/4
n=0(1)nx2n+12n+1=tan1(x)n=0(1)n2n+1=tan1(1)=π/4
Commented by mnjuly1970 last updated on 28/Nov/20
thank you so much
thankyousomuch
Answered by Dwaipayan Shikari last updated on 28/Nov/20
Σ_(n=0) ^∞ (((−1)^n )/(2n+1))=(1/1)−(1/3)+(1/5)−(1/7)+...  Another way  cotx=(1/x)−(1/(π−x))+(1/(π+x))−(1/(2π−x))+(1/(2π+x))+...  x=(π/4)      ⇒1=(4/π)−(4/(3π))+(4/(5π))−(4/(7π))+...  (π/4)=1−(1/3)+(1/5)−(1/7)+...
n=0(1)n2n+1=1113+1517+Anotherwaycotx=1x1πx+1π+x12πx+12π+x+x=π41=4π43π+45π47π+π4=113+1517+
Commented by mnjuly1970 last updated on 28/Nov/20
very nice bravo sir dwaipayan..
verynicebravosirdwaipayan..

Leave a Reply

Your email address will not be published. Required fields are marked *