Menu Close

nice-calculus-Evaluate-n-0-1-n-2n-1-




Question Number 123763 by mnjuly1970 last updated on 28/Nov/20
             ... nice   calculus ...       Evaluate ::    Σ_(n=0) ^∞  (((−1)^n )/(2n+1)) =???
$$\:\:\:\:\:\:\:\:\:\:\:\:\:…\:{nice}\:\:\:{calculus}\:… \\ $$$$\:\:\:\:\:\mathscr{E}{valuate}\:::\:\:\:\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}{n}+\mathrm{1}}\:=??? \\ $$
Answered by Snail last updated on 28/Nov/20
Σ_(n=0) ^∞ (((−1)^n x^(2n+1) )/(2n+1))=tan^(−1) (x)    Σ_(n=0) ^∞ (((−1)^n )/(2n+1))=tan^(−1) (1)=π/4
$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} {x}^{\mathrm{2}{n}+\mathrm{1}} }{\mathrm{2}{n}+\mathrm{1}}={tan}^{−\mathrm{1}} \left({x}\right) \\ $$$$ \\ $$$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}{n}+\mathrm{1}}={tan}^{−\mathrm{1}} \left(\mathrm{1}\right)=\pi/\mathrm{4} \\ $$
Commented by mnjuly1970 last updated on 28/Nov/20
thank you so much
$${thank}\:{you}\:{so}\:{much} \\ $$
Answered by Dwaipayan Shikari last updated on 28/Nov/20
Σ_(n=0) ^∞ (((−1)^n )/(2n+1))=(1/1)−(1/3)+(1/5)−(1/7)+...  Another way  cotx=(1/x)−(1/(π−x))+(1/(π+x))−(1/(2π−x))+(1/(2π+x))+...  x=(π/4)      ⇒1=(4/π)−(4/(3π))+(4/(5π))−(4/(7π))+...  (π/4)=1−(1/3)+(1/5)−(1/7)+...
$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}{n}+\mathrm{1}}=\frac{\mathrm{1}}{\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{5}}−\frac{\mathrm{1}}{\mathrm{7}}+… \\ $$$${Another}\:{way} \\ $$$${cotx}=\frac{\mathrm{1}}{{x}}−\frac{\mathrm{1}}{\pi−{x}}+\frac{\mathrm{1}}{\pi+{x}}−\frac{\mathrm{1}}{\mathrm{2}\pi−{x}}+\frac{\mathrm{1}}{\mathrm{2}\pi+{x}}+… \\ $$$${x}=\frac{\pi}{\mathrm{4}}\:\:\:\:\:\:\Rightarrow\mathrm{1}=\frac{\mathrm{4}}{\pi}−\frac{\mathrm{4}}{\mathrm{3}\pi}+\frac{\mathrm{4}}{\mathrm{5}\pi}−\frac{\mathrm{4}}{\mathrm{7}\pi}+… \\ $$$$\frac{\pi}{\mathrm{4}}=\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{5}}−\frac{\mathrm{1}}{\mathrm{7}}+… \\ $$
Commented by mnjuly1970 last updated on 28/Nov/20
very nice bravo sir dwaipayan..
$${very}\:{nice}\:{bravo}\:{sir}\:{dwaipayan}.. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *