Menu Close

nice-calculus-evaluate-x-2-1-e-x-1-e-x-dx-




Question Number 123060 by mnjuly1970 last updated on 22/Nov/20
          ....   nice  calculus ....     evaluate :::                   Ω=^(???) ∫_(−∞) ^( ∞) (x^2 /((1+e^x )(1+e^(−x) )))dx
.nicecalculus.evaluate:::Ω=???x2(1+ex)(1+ex)dx
Answered by mindispower last updated on 22/Nov/20
=2∫_0 ^∞ ((e^x x^2 )/((1+e^x )^2 ))  =2[−(x^2 /(1+e^x ))]_0 ^∞ +4∫_0 ^∞ (x/(1+e^x ))dx  =4∫_0 ^∞ xΣ(−1e^(−x) )^k e^(−x) dx  =4Σ_(k≥0) ∫_0 ^∞ (−1)^k e^(−(1+k)x) xdx  =4Σ_(k≥0) ∫_0 ^∞ (((−1)^k )/((1+k)^2 ))xe^(−x) dx  =4Σ(((−1)^k )/((1+k)^2 ))=4(((ζ(2))/2))=(π^2 /3)
=20exx2(1+ex)2=2[x21+ex]0+40x1+exdx=40xΣ(1ex)kexdx=4k00(1)ke(1+k)xxdx=4k00(1)k(1+k)2xexdx=4Σ(1)k(1+k)2=4(ζ(2)2)=π23
Commented by mnjuly1970 last updated on 22/Nov/20
grateful  mr mindspower...
gratefulmrmindspower
Answered by Dwaipayan Shikari last updated on 22/Nov/20
2∫_0 ^∞ ((x^2 e^x )/((1+e^x )^2 ))dx  =4x∫_0 ^∞ (e^x /((1+e^x )^2 ))dx−∫_0 ^∞ 4x∫(e^x /((1+e^x )^2 ))  =−[((2x)/((1+e^x )))]_0 ^∞ +4∫_0 ^∞ (x/((1+e^x )))dx  =4Σ_(n=1) ^∞ (−1)^(n+1) ∫_0 ^∞ xe^(−nx) dx  =4Σ_(n=1) ^∞ (−1)^(n+1) (1/n^2 )∫_0 ^∞ ue^(−u) du  =4Σ^∞ (((−1)^(n+1) )/n^2 )Γ(2)=(π^2 /(12)).4=(π^2 /3)
20x2ex(1+ex)2dx=4x0ex(1+ex)2dx04xex(1+ex)2=[2x(1+ex)]0+40x(1+ex)dx=4n=1(1)n+10xenxdx=4n=1(1)n+11n20ueudu=4(1)n+1n2Γ(2)=π212.4=π23
Commented by mnjuly1970 last updated on 22/Nov/20
thank you mr  payan..
thankyoumrpayan..
Answered by mathmax by abdo last updated on 22/Nov/20
Ω =∫_(−∞) ^(+∞)  (x^2 /((1+e^x )(1+e^(−x) )))dx changement e^(x ) =t give  Ω =∫_0 ^∞   ((ln^2 t)/((1+t)(1+t^(−1) )))(dt/t) =∫_0 ^∞   ((ln^2 t)/((1+t)^2 ))dt =∫_0 ^1  ((ln^2 t)/((1+t)^2 ))dt +∫_1 ^∞  ((ln^2 t)/((1+t)^2 ))dt(→t=(1/x))  =2 ∫_0 ^1  ((ln^2 x)/((1+x)^2 ))dx  we hsve for ∣x∣<1    (1/(1+x))=Σ_(n=0) ^∞ (−1)^n  x^n  ⇒  −(1/((1+x)^2 ))=Σ_(n=1) ^∞  n(−1)^n  x^(n−1)  =Σ_(n=0) ^∞ (n+1)(−1)^(n+1)  x^n  ⇒  (1/((1+x)^2 ))=Σ_(n=0) ^∞  (n+1)(−1)^n  x^n  ⇒  Ω =2 ∫_0 ^1  ln^2 x(Σ_(n=0) ^∞  (n+1)(−1)^n  x^n )dx  =2Σ_(n=0) ^∞  (n+1)(−1)^n  ∫_0 ^1  x^n  ln^2  x dx  we have by parts  ∫_0 ^1  x^n ln^2 xdx =[(x^(n+1) /(n+1))ln^2 x]_0 ^1 −∫_0 ^(1 ) (x^(n+1) /(n+1))((2lnx)/x)dx  =−(2/(n+1))∫_0 ^1   x^(n ) lnx dx =−(2/(n+1)){[(x^(n+1) /(n+1))lnx]_0 ^1 −∫_0 ^1  (x^(n+1) /(n+1))(dx/x)}  =(2/((n+1)^3 )) ⇒ Ω =2 Σ_(n=0) ^∞ (n+1)(−1)^n  (2/((n+1)^3 ))  =4 Σ_(n=0) ^∞  (((−1)^n )/((n+1)^2 )) =4 Σ_(n=1) ^∞  (((−1)^(n−1) )/n^2 ) =−4 Σ_(n=1) ^∞  (((−1)^n )/n^2 )  let δ(x)=Σ_(n=1) ^∞  (((−1)^n )/n^x )  we know δ(x) =(2^(1−x) −1)ξ(x) ⇒  δ(2)=Σ_(n=1) ^∞  (((−1)^n )/n^2 )=(2^(1−2) −1)ξ(2) =−(1/2).(π^2 /6)=−(π^2 /(12)) ⇒  Ω =−4×(−(π^2 /(12))) ⇒Ω =(π^2 /3)
Ω=+x2(1+ex)(1+ex)dxchangementex=tgiveΩ=0ln2t(1+t)(1+t1)dtt=0ln2t(1+t)2dt=01ln2t(1+t)2dt+1ln2t(1+t)2dt(t=1x)=201ln2x(1+x)2dxwehsveforx∣<111+x=n=0(1)nxn1(1+x)2=n=1n(1)nxn1=n=0(n+1)(1)n+1xn1(1+x)2=n=0(n+1)(1)nxnΩ=201ln2x(n=0(n+1)(1)nxn)dx=2n=0(n+1)(1)n01xnln2xdxwehavebyparts01xnln2xdx=[xn+1n+1ln2x]0101xn+1n+12lnxxdx=2n+101xnlnxdx=2n+1{[xn+1n+1lnx]0101xn+1n+1dxx}=2(n+1)3Ω=2n=0(n+1)(1)n2(n+1)3=4n=0(1)n(n+1)2=4n=1(1)n1n2=4n=1(1)nn2letδ(x)=n=1(1)nnxweknowδ(x)=(21x1)ξ(x)δ(2)=n=1(1)nn2=(2121)ξ(2)=12.π26=π212Ω=4×(π212)Ω=π23
Commented by mnjuly1970 last updated on 22/Nov/20
thank you so much sir max.
thankyousomuchsirmax.
Commented by mathmax by abdo last updated on 23/Nov/20
you are welcome sir
youarewelcomesir

Leave a Reply

Your email address will not be published. Required fields are marked *