Menu Close

nice-calculus-evaluation-0-1-log-1-x-log-1-x-m-n-july-197o-




Question Number 115055 by mnjuly1970 last updated on 23/Sep/20
           ...  nice  calculus...          evaluation :                            χ=∫_0 ^( 1) log(1−x).log(1+x) =???                             ...m.n.july.197o...
nicecalculusevaluation:χ=01log(1x).log(1+x)=???m.n.july.197o
Answered by mathmax by abdo last updated on 23/Sep/20
I =∫_0 ^1  ln(1−x).ln(1+x)dx   we have (d/dx)ln(1−x) =((−1)/(1−x))  =−Σ_(n=0) ^∞  x^n  ⇒ln(1−x) =−Σ_(n=0) ^∞  (x^(n+1) /(n+1)) =−Σ_(n=1) ^∞  (x^n /n)  also ln(1+x) =−Σ_(n=1) ^∞ (((−1)^n  x^n )/n) ⇒  ln(1−x).ln(1+x) =(Σ_(n=1) ^∞  (x^n /n)).(Σ_(n=1) ^∞  (((−1)^n )/n) x^n )  =Σ_(n=1) ^∞  c_n x^n  with c_n =Σ_(i+j=n)      a_i b_j     =Σ_(i+j =n)    (1/i)×(((−1)^j )/j)  =Σ_(i=1) ^(n−1)    (1/i)×(((−1)^(n−i) )/(n−i)) ⇒ln(1−x).ln(1+x) =Σ_(n=1) ^∞ (Σ_(i=1) ^(n−1)  (((−1)^(n−i) )/(i(n−i))))x^n   ⇒∫_0 ^1 ln(1−x)ln(1+x)dx =Σ_(n=1) ^∞ (Σ_(i=1) ^n  (((−1)^(n−i) )/(i(n−i))))×(1/(n+1))  =Σ_(n=1) ^∞    (((−1)^n )/(n+1))(Σ_(i=1) ^(n−1)  (((−1)^i )/(i(n−i))))  but  Σ_(i=1) ^(n−1)  (((−1)^i )/(i(n−i))) =(1/n)Σ_(i=1) ^(n−1)  (−1)^i ((1/i)−(1/(n−i))) =(1/n)Σ_(i=1) ^(n−1) (((−1)^i )/i)  −(1/n)Σ_(i=1) ^(n−1)  (((−1)^i )/(n−i))(n−i=p) =(1/n)Σ_(i=1) ^(n−1)  (((−1)^i )/i)−(1/n)Σ_1 ^(n−1)  (((−1)^(n−p) )/p)  =(1/n)Σ_(i=1) ^(n−1)  (((−1)^i )/i)−(((−1)^n )/n) Σ_(i=1) ^(n−1)  (((−1)^i )/i)  =(1/n)(1−(−1)^n )Σ_(i=1) ^(n−1)  (((−1)^i )/i)  =(1/n) Σ_(i=1) ^(2n)  (((−1)^i )/i)  ....be continued....
I=01ln(1x).ln(1+x)dxwehaveddxln(1x)=11x=n=0xnln(1x)=n=0xn+1n+1=n=1xnnalsoln(1+x)=n=1(1)nxnnln(1x).ln(1+x)=(n=1xnn).(n=1(1)nnxn)=n=1cnxnwithcn=i+j=naibj=i+j=n1i×(1)jj=i=1n11i×(1)niniln(1x).ln(1+x)=n=1(i=1n1(1)nii(ni))xn01ln(1x)ln(1+x)dx=n=1(i=1n(1)nii(ni))×1n+1=n=1(1)nn+1(i=1n1(1)ii(ni))buti=1n1(1)ii(ni)=1ni=1n1(1)i(1i1ni)=1ni=1n1(1)ii1ni=1n1(1)ini(ni=p)=1ni=1n1(1)ii1n1n1(1)npp=1ni=1n1(1)ii(1)nni=1n1(1)ii=1n(1(1)n)i=1n1(1)ii=1ni=12n(1)ii.becontinued.
Commented by mnjuly1970 last updated on 23/Sep/20
thank you so much sir  max ...
thankyousomuchsirmax
Commented by mathmax by abdo last updated on 23/Sep/20
you are welcome sir
youarewelcomesir
Answered by mathdave last updated on 23/Sep/20
solution  if let I_1 =∫_0 ^1 ln(1−x)ln(1+x)dx.....(1)  put x=−x  I_2 =∫_(−1) ^0 ln(1+x)ln(1−x)dx........(2) since the integrand are unchanged then we add them up  which mean that I_1 =I_2   I=I_1 +I_2  =2I_1 , I_1 =(1/2)I  I_1 =∫_0 ^1 ln(1−x)ln(1+x)dx=(1/2)∫_0 ^1 ln(1−x)ln(1+x)dx  put x=2y−1,dx=2dy  I_1 =(1/2)∫_0 ^1 ln(2−2y)ln(2y)2dy=∫_0 ^1 [(ln2+ln(1−y))(ln2+lny)]dy  I=∫_0 ^1 (ln^2 2+ln2(ln(1−y)+lny)+lnyln(1−y))dx  I=ln^2 (2)∫_0 ^1 dy+ln2∫_0 ^1 (lny+ln(1−y))dy+∫_0 ^1 lnyln(1−y)dy  let A=ln^2 (2)∫_0 ^1 dy=ln^2 (2)......(1)  let  B=ln2∫_0 ^1 (lny+ln(1−y))dy=2∫_0 ^1 lnydy  B=2ln2(ylny−y)_0 ^1 =−2ln2.....(2)  let  C=∫_0 ^1 lnyln(1−y)dy=−Σ_(n=1) ^∞ (1/n)∫_0 ^1 y^n lnydy  C=−Σ_(n=1) ^∞ (1/n)(∂/∂a)∣_(a=1) ∫_0 ^1 y^n .y^(a−1) dy=−Σ_(n=1) ^∞ (1/n)(∂/∂a)∣_(a=1) ((1/(n+a)))  C=Σ_(n=1) ^∞ (1/(n(n+1)^2 ))=Σ_(n=1) ^∞ ((1/n)−(1/(n+1))−(1/((n+1)^2 )))  C=Σ_(n=1) ^∞ (1/n)−Σ_(n=2) ^∞ (1/n)−Σ_(n=2) ^∞ (1/n^2 )=Σ_(n=1) ^∞ ((1/n))−Σ_(n=1) ^∞ ((1/n)−1)−Σ_(n=1) ^∞ ((π^2 /6)−1)  C=1−(π^2 /6)+1=(2−(π^2 /6)).........(3)  but  I=A+B+C=ln^2 (2)−2ln2+2−(π^2 /6)=2−(π^2 /6)+ln^2 (2)−ln4  ∵∫_0 ^1 ln(1−x)ln(1+x)dx=2−(π^2 /6)+ln^2 (2)−ln4  by mathdave(23/09/2020)
solutionifletI1=01ln(1x)ln(1+x)dx..(1)putx=xI2=10ln(1+x)ln(1x)dx..(2)sincetheintegrandareunchangedthenweaddthemupwhichmeanthatI1=I2I=I1+I2=2I1,I1=12II1=01ln(1x)ln(1+x)dx=1201ln(1x)ln(1+x)dxputx=2y1,dx=2dyI1=1201ln(22y)ln(2y)2dy=01[(ln2+ln(1y))(ln2+lny)]dyI=01(ln22+ln2(ln(1y)+lny)+lnyln(1y))dxI=ln2(2)01dy+ln201(lny+ln(1y))dy+01lnyln(1y)dyletA=ln2(2)01dy=ln2(2)(1)letB=ln201(lny+ln(1y))dy=201lnydyB=2ln2(ylnyy)01=2ln2..(2)letC=01lnyln(1y)dy=n=11n01ynlnydyC=n=11naa=101yn.ya1dy=n=11naa=1(1n+a)C=n=11n(n+1)2=n=1(1n1n+11(n+1)2)C=n=11nn=21nn=21n2=n=1(1n)n=1(1n1)n=1(π261)C=1π26+1=(2π26)(3)butI=A+B+C=ln2(2)2ln2+2π26=2π26+ln2(2)ln401ln(1x)ln(1+x)dx=2π26+ln2(2)ln4bymathdave(23/09/2020)
Commented by mnjuly1970 last updated on 23/Sep/20
thank you mr dave   nice solution that was i  wanted...
thankyoumrdavenicesolutionthatwasiwanted
Commented by mnjuly1970 last updated on 23/Sep/20
final answer:  ln^2 (2)−ln(4)+2−(π^2 /6)  thank you so much mr  dave.
finalanswer:ln2(2)ln(4)+2π26thankyousomuchmrdave.
Commented by mnjuly1970 last updated on 23/Sep/20
you are very gentlman  mr dave.thank you for   your effort.
youareverygentlmanmrdave.thankyouforyoureffort.
Commented by Tawa11 last updated on 06/Sep/21
great
great

Leave a Reply

Your email address will not be published. Required fields are marked *