Menu Close

nice-calculus-evaluation-0-t-2-e-t-ln-t-dt-solution-f-s-0-t-2-s-e-t-dt-f-0-f-s-3-s-f-s-3-s-3-s




Question Number 129972 by mnjuly1970 last updated on 21/Jan/21
               ....nice  calculus...    evaluation:               Ω=∫_0 ^( ∞) t^2 e^(−t) ln(t)dt=??    solution:     f(s)=∫_0 ^( ∞) t^(2+s) e^(−t) dt     Ω=f ′(0)=...     f(s)=Γ(3+s)      f ′(s)=Γ′(3+s)=ψ(3+s)Γ(3+s)  f ′(0)=ψ(3)Γ(3)=2((3/2) −γ)              =3−2γ     ∴ Ω=∫_0 ^( ∞) t^2 e^(−t) ln(t)=3−2γ ...
.nicecalculusevaluation:Ω=0t2etln(t)dt=??solution:f(s)=0t2+setdtΩ=f(0)=f(s)=Γ(3+s)f(s)=Γ(3+s)=ψ(3+s)Γ(3+s)f(0)=ψ(3)Γ(3)=2(32γ)=32γΩ=0t2etln(t)=32γ
Answered by Ar Brandon last updated on 21/Jan/21
Ω=∫_0 ^∞ t^2 e^(−t) ln(t)dt=∫_0 ^∞ t^2 e^(−t) ∫_0 ^∞ ((e^(−y) −e^(−ty) )/y)dydt      =∫_0 ^∞ ∫_0 ^∞ t^2 {((e^(−t−y) −e^(−ty−t) )/y)}dydt      =∫_0 ^∞ ∫_0 ^∞ (1/y){t^2 e^(−t) ∙e^(−y) −t^2 e^(−(y+1)t) }dtdy      =∫_0 ^∞ (1/y)Γ(3)e^(−y) dy−∫_0 ^∞ ∫_0 ^∞ (1/y)∙((m^2 e^(−m) )/((y+1)^3 ))dmdy      =2∫_0 ^∞ (e^(−y) /y)dy−∫_0 ^∞ ((Γ(3))/(y(y+1)^3 ))dy      =2{e^(−y) lny+∫e^(−y) lnydy}_0 ^∞                                −2∫_0 ^∞ {(1/y)−(1/(y+1))−(1/((y+1)^2 ))−(1/((y+1)^3 ))}dy      =−2γ+[2e^(−y) lny−2lny+2ln(y+1)−(2/(y+1))−(1/((y+1)^2 ))]_0 ^∞       =−2γ+3
Ω=0t2etln(t)dt=0t2et0eyetyydydt=00t2{etyetyty}dydt=001y{t2eteyt2e(y+1)t}dtdy=01yΓ(3)eydy001ym2em(y+1)3dmdy=20eyydy0Γ(3)y(y+1)3dy=2{eylny+eylnydy}020{1y1y+11(y+1)21(y+1)3}dy=2γ+[2eylny2lny+2ln(y+1)2y+11(y+1)2]0=2γ+3
Commented by mnjuly1970 last updated on 21/Jan/21
nice very nice   thank you mr brandon...
niceverynicethankyoumrbrandon
Commented by Ar Brandon last updated on 21/Jan/21
You're welcome Sir��

Leave a Reply

Your email address will not be published. Required fields are marked *