Question Number 128841 by mnjuly1970 last updated on 10/Jan/21
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…{nice}\:{calculus}\:… \\ $$$$\:\:\:\:\mathscr{E}{valuation}\:{of}\:::\:\Phi=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} {ln}\left({x}\right).{arctan}\left({x}\right){dx} \\ $$$${solution}:: \\ $$$$\:\:\:\:{note}\:\mathrm{1}::\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{\mathrm{2}{n}−\mathrm{1}}={arctan}\left(\mathrm{1}\right)=\frac{\pi}{\mathrm{4}} \\ $$$${note}\:\mathrm{2}\:::\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{{n}}\:={ln}\left(\mathrm{1}+\mathrm{1}\right)={ln}\left(\mathrm{2}\right) \\ $$$${note}\:\mathrm{3}::\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{{n}^{\mathrm{2}} }\:\underset{{eta}\:{function}} {\overset{{Drichlet}} {=}}\:\eta\left(\mathrm{2}\right)=\frac{\pi^{\mathrm{2}} }{\mathrm{12}} \\ $$$$\:……{start}……. \\ $$$$\:\:\:\Phi=\int_{\mathrm{0}} ^{\:\mathrm{1}} \left\{{ln}\left({x}\right)\underset{{n}=\mathrm{1}\:} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{\left.\mathrm{2}{n}−\mathrm{1}\right)}{x}^{\mathrm{2}{n}−\mathrm{1}} \right\}{dx} \\ $$$$\:\:=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{\left(\mathrm{2}{n}−\mathrm{1}\right)}\int_{\mathrm{0}} ^{\:\mathrm{1}} {ln}\left({x}\right){x}^{\mathrm{2}{n}−\mathrm{1}} {dx} \\ $$$$\:\:=\underset{{n}=\mathrm{1}\:} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{\left(\mathrm{2}{n}−\mathrm{1}\right)}\left\{\left[\frac{{x}^{\mathrm{2}{n}} }{\mathrm{2}{n}}{ln}\left({x}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} −\frac{\mathrm{1}}{\mathrm{2}{n}}\int_{\mathrm{0}} ^{\:\mathrm{1}} {x}^{\mathrm{2}{n}−\mathrm{1}} {dx}\right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}−\mathrm{1}\right){n}^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{4}}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} \left[\frac{\mathrm{2}{n}−\left(\mathrm{2}{n}−\mathrm{1}\right)}{\left(\mathrm{2}{n}−\mathrm{1}\right){n}^{\mathrm{2}} }\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}−\mathrm{1}\right){n}}\:−\frac{\mathrm{1}}{\mathrm{4}}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{2}\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}{n}−\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{2}}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}}+\frac{\mathrm{1}}{\mathrm{4}}\eta\left(\mathrm{2}\right) \\ $$$$=\frac{−\pi}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{2}\right)+\frac{\pi^{\mathrm{2}} }{\mathrm{48}}\:\:… \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…\Phi=\frac{\pi^{\mathrm{2}} }{\mathrm{48}}\:−\frac{\pi}{\mathrm{4}}\:+\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{2}\right)\:… \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…{m}.{n}.{july}.\mathrm{1970}… \\ $$$$ \\ $$
Commented by Dwaipayan Shikari last updated on 10/Jan/21
$$\int_{\mathrm{0}} ^{\mathrm{1}} {log}\left({x}\right)\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}{n}+\mathrm{1}}{x}^{\mathrm{2}{n}+\mathrm{1}} {dx}=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}{n}+\mathrm{1}}\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{\mathrm{2}{n}+\mathrm{1}} {log}\left({x}\right){dx}\:\:\:\:{log}\left({x}\right)={t} \\ $$$$=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}{n}+\mathrm{1}}\int_{\mathrm{0}} ^{\infty} {e}^{−\left(\mathrm{2}{n}+\mathrm{2}\right){t}} {tdt} \\ $$$$=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{2}\right)^{\mathrm{2}} }=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{2}\right)\left(\mathrm{2}{n}+\mathrm{1}\right)}−\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{2}\right)^{\mathrm{2}} } \\ $$$$=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{2}\right)}−\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}{n}+\mathrm{1}}−\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{2}\right)^{\mathrm{2}} } \\ $$$$={log}\left(\sqrt{\mathrm{2}}\right)−\frac{\pi}{\mathrm{4}}−\frac{\pi^{\mathrm{2}} }{\mathrm{48}} \\ $$
Commented by mnjuly1970 last updated on 11/Jan/21
$${thank}\:{you}\:{mr}\:{dwaipayan}… \\ $$$${grateful}\:. \\ $$
Answered by mindispower last updated on 10/Jan/21
$$\left.\mathrm{1}\right)\:{by}\:{part}=\left[{ln}\left({x}\right).\left({xarctan}\left({x}\right)−\frac{{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{\mathrm{2}}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$−\int_{\mathrm{0}} ^{\mathrm{1}} {arctan}\left({x}\right){dx}+\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{\mathrm{2}{x}}{dx} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {arctan}\left({x}\right)=\frac{\pi}{\mathrm{4}}−\frac{{ln}\left(\mathrm{2}\right)}{\mathrm{2}} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{\mathrm{2}{x}}{dx}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{\mathrm{4}{x}^{\mathrm{2}} }.{d}\left({x}^{\mathrm{2}} \right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\mathrm{1}+{t}\right)}{{t}}{dt}=\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\mathrm{1}} \underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} {t}^{{n}−\mathrm{1}} }{{n}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{{n}^{\mathrm{2}} }=−\frac{\mathrm{1}}{\mathrm{16}}\zeta\left(\mathrm{2}\right)+\frac{\mathrm{1}}{\mathrm{4}}\left(\frac{\mathrm{3}}{\mathrm{4}}\right)\zeta\left(\mathrm{2}\right) \\ $$$$=\frac{\zeta\left(\mathrm{2}\right)}{\mathrm{8}}=\frac{\pi^{\mathrm{2}} }{\mathrm{48}}…{we}\:{get}\:\frac{\pi^{\mathrm{2}} }{\mathrm{48}}−\frac{\pi}{\mathrm{4}}+\frac{{ln}\left(\mathrm{2}\right)}{\mathrm{2}} \\ $$$$\left.\mathrm{2}\right){ln}\left({x}\right)=\partial_{{y}} {x}^{{y}} \mid_{{y}=\mathrm{0}} \\ $$$${f}\left({y}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{y}} {arctan}\left({x}\right){dx} \\ $$$${by}\:{part}=\frac{\pi}{\mathrm{4}\left({y}+\mathrm{1}\right)}−\frac{\mathrm{1}}{{y}+\mathrm{1}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{{y}+\mathrm{1}} }{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$$$=\frac{\pi}{\mathrm{4}\left({y}+\mathrm{1}\right)}−\frac{\mathrm{1}}{{y}+\mathrm{1}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{{y}+\mathrm{1}} −{x}^{{y}+\mathrm{3}} }{\mathrm{1}−{x}^{\mathrm{4}} }{dx} \\ $$$${x}^{\mathrm{4}} ={t} \\ $$$$=\frac{\pi}{\mathrm{4}\left({y}+\mathrm{1}\right)}−\frac{\mathrm{1}}{{y}+\mathrm{1}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{t}^{\frac{{y}+\mathrm{1}}{\mathrm{4}}} −{t}^{\frac{{y}+\mathrm{3}}{\mathrm{4}}} }{\mathrm{4}\left(\mathrm{1}−{t}\right)}.{t}^{−\frac{\mathrm{3}}{\mathrm{4}}} {dt} \\ $$$$=\frac{\mathrm{1}}{{y}+\mathrm{1}}\left(\frac{\pi}{\mathrm{4}}−\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{t}^{\frac{{y}−\mathrm{2}}{\mathrm{4}}} −{t}^{\frac{{y}−\mathrm{1}}{\mathrm{4}}} }{\mathrm{1}−{t}}{dt}\right) \\ $$$$\Psi\left({s}+\mathrm{1}\right)=−\gamma+\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}−{x}^{{s}} }{\mathrm{1}−{x}}{dx} \\ $$$${we}\:{get}\frac{\mathrm{1}}{{y}+\mathrm{1}}\left(\frac{\pi}{\mathrm{4}}−\Psi\left(\frac{{y}+\mathrm{3}}{\mathrm{4}}\right)+\Psi\left(\frac{{y}+\mathrm{2}}{\mathrm{4}}\right)\right)={f}\left({y}\right) \\ $$$${f}'\left({y}\right)=−\frac{\mathrm{1}}{\left({y}+\mathrm{1}\right)^{\mathrm{2}} }\left(\frac{\pi}{\mathrm{4}}+\Psi\left(\frac{{y}+\mathrm{2}}{\mathrm{4}}\right)−\Psi\left(\frac{{y}+\mathrm{3}}{\mathrm{4}}\right)\right)+\left(\frac{\mathrm{1}}{\mathrm{4}}\left(\Psi'\left(\frac{{y}+\mathrm{2}}{\mathrm{4}}\right)−\Psi'\left(\frac{{y}+\mathrm{3}}{\mathrm{4}}\right)\right).\frac{\mathrm{1}}{{y}+\mathrm{1}}\right. \\ $$$$ \\ $$
Commented by mnjuly1970 last updated on 11/Jan/21
$${thanks}\:{alot}\:{sir}\:{power} \\ $$$$\:{powerful}\:{and}\:{mighty}\:{as}\:{always} \\ $$$$\:.{peace}\:{be}\:{upon}\:{you}… \\ $$