Menu Close

nice-calculus-Evaluation-of-0-1-ln-x-arctan-x-dx-solution-note-1-n-1-1-n-1-2n-1-arctan-1-pi-4-note-2-n-1-1-n-1-




Question Number 128841 by mnjuly1970 last updated on 10/Jan/21
                    ...nice calculus ...      Evaluation of :: Φ= ∫_0 ^( 1) ln(x).arctan(x)dx  solution::      note 1:: Σ_(n=1) ^∞ (((−1)^(n−1) )/(2n−1))=arctan(1)=(π/4)  note 2 :: Σ_(n=1) ^∞ (((−1)^(n−1) )/n) =ln(1+1)=ln(2)  note 3:: Σ_(n=1) ^∞ (((−1)^(n−1) )/n^2 ) =_(eta function) ^(Drichlet)  η(2)=(π^2 /(12))   ......start.......     Φ=∫_0 ^( 1) {ln(x)Σ_(n=1 ) ^∞ (((−1)^(n−1) )/(2n−1)))x^(2n−1) }dx    =Σ_(n=1) ^∞ (((−1)^(n−1) )/((2n−1)))∫_0 ^( 1) ln(x)x^(2n−1) dx    =Σ_(n=1 ) ^∞ (((−1)^(n−1) )/((2n−1))){[(x^(2n) /(2n))ln(x)]_0 ^1 −(1/(2n))∫_0 ^( 1) x^(2n−1) dx}  =(1/4)Σ_(n=1) ^∞ (((−1)^n )/((2n−1)n^2 ))=(1/4)Σ_(n=1) ^∞ (−1)^n [((2n−(2n−1))/((2n−1)n^2 ))]  =(1/2)Σ_(n=1) ^∞ (((−1)^n )/((2n−1)n)) −(1/4)Σ_(n=1) ^∞ (((−1)^n )/n^2 )  =(1/2)Σ_(n=1) ^∞ ((2(−1)^n )/(2n−1))−(1/2)Σ_(n=1) ^∞ (((−1)^n )/n)+(1/4)η(2)  =((−π)/4)+(1/2)ln(2)+(π^2 /(48))  ...                  ...Φ=(π^2 /(48)) −(π/4) +(1/2)ln(2) ...                      ...m.n.july.1970...
nicecalculusEvaluationof::Φ=01ln(x).arctan(x)dxsolution::note1::n=1(1)n12n1=arctan(1)=π4note2::n=1(1)n1n=ln(1+1)=ln(2)note3::n=1(1)n1n2=Drichletetafunctionη(2)=π212start.Φ=01{ln(x)n=1(1)n12n1)x2n1}dx=n=1(1)n1(2n1)01ln(x)x2n1dx=n=1(1)n1(2n1){[x2n2nln(x)]0112n01x2n1dx}=14n=1(1)n(2n1)n2=14n=1(1)n[2n(2n1)(2n1)n2]=12n=1(1)n(2n1)n14n=1(1)nn2=12n=12(1)n2n112n=1(1)nn+14η(2)=π4+12ln(2)+π248Φ=π248π4+12ln(2)m.n.july.1970
Commented by Dwaipayan Shikari last updated on 10/Jan/21
∫_0 ^1 log(x)Σ_(n=0) ^∞ (((−1)^n )/(2n+1))x^(2n+1) dx=Σ_(n=0) ^∞ (((−1)^n )/(2n+1))∫_0 ^1 x^(2n+1) log(x)dx    log(x)=t  =Σ_(n=0) ^∞ (((−1)^n )/(2n+1))∫_0 ^∞ e^(−(2n+2)t) tdt  =Σ_(n=0) ^∞ (((−1)^n )/((2n+1)(2n+2)^2 ))=Σ_(n=0) ^∞ (((−1)^n )/((2n+2)(2n+1)))−Σ_(n=0) ^∞ (((−1)^n )/((2n+2)^2 ))  =Σ_(n=0) ^∞ (((−1)^n )/((2n+2)))−(((−1)^n )/(2n+1))−Σ_(n=0) ^∞ (((−1)^n )/((2n+2)^2 ))  =log((√2))−(π/4)−(π^2 /(48))
01log(x)n=0(1)n2n+1x2n+1dx=n=0(1)n2n+101x2n+1log(x)dxlog(x)=t=n=0(1)n2n+10e(2n+2)ttdt=n=0(1)n(2n+1)(2n+2)2=n=0(1)n(2n+2)(2n+1)n=0(1)n(2n+2)2=n=0(1)n(2n+2)(1)n2n+1n=0(1)n(2n+2)2=log(2)π4π248
Commented by mnjuly1970 last updated on 11/Jan/21
thank you mr dwaipayan...  grateful .
thankyoumrdwaipayangrateful.
Answered by mindispower last updated on 10/Jan/21
1) by part=[ln(x).(xarctan(x)−((ln(1+x^2 ))/2))]_0 ^1   −∫_0 ^1 arctan(x)dx+∫_0 ^1 ((ln(1+x^2 ))/(2x))dx  ∫_0 ^1 arctan(x)=(π/4)−((ln(2))/2)  ∫_0 ^1 ((ln(1+x^2 ))/(2x))dx=∫_0 ^1 ((ln(1+x^2 ))/(4x^2 )).d(x^2 )  =(1/4)∫_0 ^1 ((ln(1+t))/t)dt=(1/4)∫_0 ^1 Σ_(n≥1) (((−1)^(n−1) t^(n−1) )/n)  =(1/4)Σ_(n≥1) (((−1)^(n−1) )/n^2 )=−(1/(16))ζ(2)+(1/4)((3/4))ζ(2)  =((ζ(2))/8)=(π^2 /(48))...we get (π^2 /(48))−(π/4)+((ln(2))/2)  2)ln(x)=∂_y x^y ∣_(y=0)   f(y)=∫_0 ^1 x^y arctan(x)dx  by part=(π/(4(y+1)))−(1/(y+1))∫_0 ^1 (x^(y+1) /(1+x^2 ))  =(π/(4(y+1)))−(1/(y+1))∫_0 ^1 ((x^(y+1) −x^(y+3) )/(1−x^4 ))dx  x^4 =t  =(π/(4(y+1)))−(1/(y+1))∫_0 ^1 ((t^((y+1)/4) −t^((y+3)/4) )/(4(1−t))).t^(−(3/4)) dt  =(1/(y+1))((π/4)−∫_0 ^1 ((t^((y−2)/4) −t^((y−1)/4) )/(1−t))dt)  Ψ(s+1)=−γ+∫_0 ^1 ((1−x^s )/(1−x))dx  we get(1/(y+1))((π/4)−Ψ(((y+3)/4))+Ψ(((y+2)/4)))=f(y)  f′(y)=−(1/((y+1)^2 ))((π/4)+Ψ(((y+2)/4))−Ψ(((y+3)/4)))+((1/4)(Ψ′(((y+2)/4))−Ψ′(((y+3)/4))).(1/(y+1))
1)bypart=[ln(x).(xarctan(x)ln(1+x2)2)]0101arctan(x)dx+01ln(1+x2)2xdx01arctan(x)=π4ln(2)201ln(1+x2)2xdx=01ln(1+x2)4x2.d(x2)=1401ln(1+t)tdt=1401n1(1)n1tn1n=14n1(1)n1n2=116ζ(2)+14(34)ζ(2)=ζ(2)8=π248wegetπ248π4+ln(2)22)ln(x)=yxyy=0f(y)=01xyarctan(x)dxbypart=π4(y+1)1y+101xy+11+x2=π4(y+1)1y+101xy+1xy+31x4dxx4=t=π4(y+1)1y+101ty+14ty+344(1t).t34dt=1y+1(π401ty24ty141tdt)Ψ(s+1)=γ+011xs1xdxweget1y+1(π4Ψ(y+34)+Ψ(y+24))=f(y)f(y)=1(y+1)2(π4+Ψ(y+24)Ψ(y+34))+(14(Ψ(y+24)Ψ(y+34)).1y+1
Commented by mnjuly1970 last updated on 11/Jan/21
thanks alot sir power   powerful and mighty as always   .peace be upon you...
thanksalotsirpowerpowerfulandmightyasalways.peacebeuponyou

Leave a Reply

Your email address will not be published. Required fields are marked *