Menu Close

nice-calculus-evluate-0-e-x-2-cos-x-dx-




Question Number 128736 by mnjuly1970 last updated on 09/Jan/21
                   ... nice   calculus...         evluate ::       φ = ∫_0 ^( ∞) e^(−x^2 ) cos(x)dx=?
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…\:{nice}\:\:\:{calculus}… \\ $$$$ \\ $$$$\:\:\:\:\:{evluate}\::: \\ $$$$\:\:\:\:\:\phi\:=\:\int_{\mathrm{0}} ^{\:\infty} {e}^{−{x}^{\mathrm{2}} } {cos}\left({x}\right){dx}=? \\ $$$$ \\ $$
Commented by Lordose last updated on 10/Jan/21
Answered by Dwaipayan Shikari last updated on 09/Jan/21
(1/2)∫_0 ^∞ e^(−x^2 +ix) +e^(−x^2 −ix) dx  =(1/2)∫_0 ^∞ e^(−(x−(i/2))^2 −(1/4)) +e^(−(x+(i/2))^2 −(1/4)) dx  =(1/(2(e)^(1/4) ))((√π))=((√π)/(2(e)^(1/4) ))
$$\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} {e}^{−{x}^{\mathrm{2}} +{ix}} +{e}^{−\boldsymbol{{x}}^{\mathrm{2}} −\boldsymbol{{ix}}} \boldsymbol{{dx}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} {e}^{−\left({x}−\frac{{i}}{\mathrm{2}}\right)^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{4}}} +{e}^{−\left({x}+\frac{{i}}{\mathrm{2}}\right)^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{4}}} {dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}\sqrt[{\mathrm{4}}]{{e}}}\left(\sqrt{\pi}\right)=\frac{\sqrt{\pi}}{\mathrm{2}\sqrt[{\mathrm{4}}]{{e}}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *