Menu Close

nice-calculus-find-0-4-ln-x-4x-x-2-1-2-dx-




Question Number 124432 by mnjuly1970 last updated on 03/Dec/20
                ... nice  calculus...      find::                 φ=∫_0 ^( 4) ((ln(x))/((4x−x^2 )^(1/2) ))dx=?
nicecalculusfind::ϕ=04ln(x)(4xx2)12dx=?
Answered by mindispower last updated on 03/Dec/20
x=4t  q=∫_0 ^1 ((ln(4)+ln(t))/((t−t^2 )^(1/2) ))dt  w=ln(4)∫_0 ^1 (1/(t^(1/2) (1−t)^(1/2) ))+∫_0 ^1 ((ln(t))/( (√t).(√(1−t))))dt  =ln(4).∫_0 ^1 t^((1/2)−) (1−t)^((1/2)−1) dt+∂_c ∫_0 ^1 t^((1/2)+c−1) (1−t)^((1/2)−1) dt∣_(c=0)   =ln(4)β((1/2),(1/2))+∂_C β((1/2)+c,(1/2))∣_(c=0)   =((ln(4)π)/(sin((π/2))))+β((1/2)+c,(1/2))(Ψ((1/2)+c)−Ψ(1+c))∣_(c=0)   =πln(4)+π(Ψ((1/2))−Ψ(1))    =π(ln(4)+π(−2ln(2)−γ+γ)  =0
x=4tq=01ln(4)+ln(t)(tt2)12dtw=ln(4)011t12(1t)12+01ln(t)t.1tdt=ln(4).01t12(1t)121dt+c01t12+c1(1t)121dtc=0=ln(4)β(12,12)+Cβ(12+c,12)c=0=ln(4)πsin(π2)+β(12+c,12)(Ψ(12+c)Ψ(1+c))c=0=πln(4)+π(Ψ(12)Ψ(1))=π(ln(4)+π(2ln(2)γ+γ)=0
Commented by mnjuly1970 last updated on 03/Dec/20
mercey mr mindspower..  thanks alot...
merceymrmindspower..thanksalot
Commented by mindispower last updated on 05/Dec/20
withe pleasur sir
withepleasursir
Answered by mnjuly1970 last updated on 03/Dec/20
another  way  we know :  ∫_0 ^( (π/2)) ln(sin(x))dx=((−π)/2)ln(2) ✓    x=4y     φ=∫_0 ^( 1) ((ln(4)+ln(y))/( (√y) (√(1−y)))) dy       =^(y=sin^2 (t)) ∫_0 ^( (π/2)) {((2ln(2)+2ln(sin(t))/(sin(t)cos(t)))}(2sin(t)cos(t))dt  =2πln(2)+4∫_0 ^( (π/2)) ln(sin(t))dt   =2πln(2)−2πln(2)=0✓
anotherwayweknow:0π2ln(sin(x))dx=π2ln(2)x=4yϕ=01ln(4)+ln(y)y1ydy=y=sin2(t)0π2{2ln(2)+2ln(sin(t)sin(t)cos(t)}(2sin(t)cos(t))dt=2πln(2)+40π2ln(sin(t))dt=2πln(2)2πln(2)=0
Answered by mathmax by abdo last updated on 03/Dec/20
A =∫_0 ^4  ((lnx)/( (√(4x−x^2 ))))dx ⇒ A =∫_0 ^4  ((lnx)/( (√(−(x^2 −4x+4−4)))))dx  =∫_0 ^4  ((lnx)/( (√(4−(x−2)^2 ))))dx =_(x−2=2cost)    ∫_π ^0  ((ln(2+2cost))/(2sint))(−2sint)dt  =∫_0 ^π ln(2(1+cost))dt =∫_0 ^π ln(4cos^2 ((t/2)))dt  =2πln(2) +2 ∫_0 ^π ln(cos((t/(2 ))))dt (→(t/2)=x)  =2πln(2)+2 ∫_0 ^(π/2) ln(cosx)(2dx) =2πln(2)+4(−(π/2)ln2)  =2πln2−2πln(2)=0 ⇒ A=0
A=04lnx4xx2dxA=04lnx(x24x+44)dx=04lnx4(x2)2dx=x2=2costπ0ln(2+2cost)2sint(2sint)dt=0πln(2(1+cost))dt=0πln(4cos2(t2))dt=2πln(2)+20πln(cos(t2))dt(t2=x)=2πln(2)+20π2ln(cosx)(2dx)=2πln(2)+4(π2ln2)=2πln22πln(2)=0A=0
Commented by mnjuly1970 last updated on 03/Dec/20
thanks alot sir max  excellent
thanksalotsirmaxexcellent

Leave a Reply

Your email address will not be published. Required fields are marked *