Menu Close

nice-calculus-find-0-x-2-ln-1-e-x-x-3-dx-




Question Number 130759 by mnjuly1970 last updated on 28/Jan/21
                ...nice  calculus ...   find : φ =∫_0 ^( ∞) (x^2 ln(1+e^x )−x^3 )dx
nicecalculusfind:ϕ=0(x2ln(1+ex)x3)dx
Answered by mnjuly1970 last updated on 28/Jan/21
ans:    φ=∫_0 ^( ∞) x^2 ln(((1+e^x )/e^x ))dx     =∫_0 ^( ∞) x^2 ln(1+e^(−x) )dx      =Σ_(n=1) ^∞ (−1)^((n−1)) (1/n)∫_0 ^( ∞) x^2 e^(−nx) dx       =^(nx=y) Σ_(n=1) ^∞ [(−1)^((n−1)) (1/n^4 )∫_0 ^( ∞) y^2 e^(−y) dy]         =Γ(3)Σ_(n=1) ^∞ (((−1)^(n−1) )/n^4 )=2[(1/1^4 )−(1/2^4 )+(1/3^4 )−(1/4^4 )+..]    =2 (ζ(4)−(2/2^4 )(ζ(4)))=2((π^4 /(90))−(π^4 /(8∗90)))    =(π^4 /(45))(1−(1/8))=(7/8)∗(π^4 /(45))=((7π^4 )/(360)) =...       correct  or  no ???
ans:ϕ=0x2ln(1+exex)dx=0x2ln(1+ex)dx=n=1(1)(n1)1n0x2enxdx=nx=yn=1[(1)(n1)1n40y2eydy]=Γ(3)n=1(1)n1n4=2[114124+134144+..]=2(ζ(4)224(ζ(4)))=2(π490π4890)=π445(118)=78π445=7π4360=correctorno???
Answered by Dwaipayan Shikari last updated on 28/Jan/21
∫_0 ^∞ x^2 log(1+e^(−x) )dx  =Σ_(n=1) ^∞ (((−1)^(n+1) )/n)∫_0 ^∞ e^(−nx) x^2 dx=2Σ_(n=1) ^∞ (((−1)^(n+1) )/n^4 )=(π^4 /(45))(1−(1/2^3 ))=((7π^4 )/(360))
0x2log(1+ex)dx=n=1(1)n+1n0enxx2dx=2n=1(1)n+1n4=π445(1123)=7π4360
Commented by mnjuly1970 last updated on 28/Jan/21
  nice very nice::    η(s)=(1−2^(1−s) )ζ(s)      η(4)=(1−(1/8))ζ(4)=(7/8)∗(π^4 /(90))                =((7π^4 )/(720))  ⇒ ans :=2(((7π^4 )/(720)))=((7π^4 )/(360))
niceverynice::η(s)=(121s)ζ(s)η(4)=(118)ζ(4)=78π490=7π4720ans:=2(7π4720)=7π4360
Answered by Lordose last updated on 28/Jan/21
  Ω = ∫_0 ^( ∞) (x^2 ln(1+e^x )−x^3 )dx = ∫_0 ^( ∞) x^2 (ln(1+e^(−x) ))dx  Ω =^(u=e^(−x) ) ∫_0 ^( 1) (1/u)(−lnu)^2 ln(1+u)du = ∫_0 ^( 1) u^(−1) ln(1+u)ln^2 (u)du  Ω = Σ_(n=1) ^∞ (((−1)^(n−1) )/n)∫_0 ^( 1) u^(n−1) ln^2 (u)du  Ω(n) = ∫_0 ^( 1) u^n du = (u^(n+1) /(n+1)) = (1/(n+1))  Ω′(n) = ∫_0 ^( 1) u^n ln(u)du = −(1/((n+1)^2 ))  Ω′′(n) = ∫_0 ^( 1) u^n ln^2 (u)du = (1/((n+1)^3 ))  Ω^(′′) (n−1) = (1/n^3 )  Ω = Σ_(n=1) ^∞ (((−1)^(n−1) )/n^4 ) = ((7π^4 )/(720))
Ω=0(x2ln(1+ex)x3)dx=0x2(ln(1+ex))dxΩ=u=ex011u(lnu)2ln(1+u)du=01u1ln(1+u)ln2(u)duΩ=n=1(1)n1n01un1ln2(u)duΩ(n)=01undu=un+1n+1=1n+1Ω(n)=01unln(u)du=1(n+1)2Ω(n)=01unln2(u)du=1(n+1)3Ω(n1)=1n3Ω=n=1(1)n1n4=7π4720

Leave a Reply

Your email address will not be published. Required fields are marked *