Menu Close

nice-calculus-find-a-series-representation-for-the-following-integral-0-1-cos-h-xln-x-dx-




Question Number 123898 by mnjuly1970 last updated on 29/Nov/20
         ... nice  calculus...    find  a series representation   for  the following integral ::      φ=∫_0 ^( 1) cos(h(xln(x))dx
nicecalculusfindaseriesrepresentationforthefollowingintegral::ϕ=01cos(h(xln(x))dx
Answered by mindispower last updated on 29/Nov/20
∫_0 ^1 ln^a (x)dx=∫_0 ^∞ (−t)^a e^(−t) dt...1  =(−1)^a Γ(a+1).....nice  cos(x)=Σ_(n≥0) (((−1)^n x^(2n) )/((2n)!))  ∅=∫_0 ^1 Σ_(n≥0) (((−1)^n )/(2n!)).(hln(x))^(2n) dx  =Σ_(n≥0) (((−1)^n )/((2n)!))h^(2n)  ∫_0 ^1 ln^(2n) (x)dx....appie 1 a=2n  =Σ_(n≥0) (((−1)^n )/((2n)!))h^(2n) .(((−1)^(2n) Γ(2n+1))/)  =Σ_(n≥0) (−h^2 )^n =(1/(1+h^2 ))
01lna(x)dx=0(t)aetdt1=(1)aΓ(a+1)..nicecos(x)=n0(1)nx2n(2n)!=01n0(1)n2n!.(hln(x))2ndx=n0(1)n(2n)!h2n01ln2n(x)dx.appie1a=2n=n0(1)n(2n)!h2n.(1)2nΓ(2n+1)=n0(h2)n=11+h2
Commented by Mammadli last updated on 29/Nov/20
Commented by Dwaipayan Shikari last updated on 29/Nov/20
lim_(x→1) ((a(a^(x−1) −1))/(x−1))=a.log(a)
limx1a(ax11)x1=a.log(a)
Commented by mnjuly1970 last updated on 29/Nov/20
thanks for your work  sir power.but  h:hypbolic
thanksforyourworksirpower.buth:hypbolic
Answered by Dwaipayan Shikari last updated on 29/Nov/20
∫_0 ^1 cos(h(log(x))dx  =∫_0 ^1 ((e^(logx) +e^(−logx) )/2)dx  =(1/2)∫_0 ^1 Σ_(n=0) ^∞ (((logx)^n )/(n!))+(1/2)∫_0 ^1 Σ_(n=0) ^∞ (((−1)^n (logx)^n )/(n!))  =(1/2)(Σ_(n=0) ^∞ (1/(n!))∫_0 ^1 (logx)^n +Σ_(n=0) ^∞ (((−1)^n )/(n!))∫_0 ^1 (logx)^n )  =(1/2)Σ_(n=0) ^∞ (1/(n!))∫_(−∞) ^0 e^t t^n +(1/2)Σ_(n=0) ^∞ (((−1)^n )/(n!))∫_(−∞) ^0 e^t t^n dt      t=−Φ  =(1/2)Σ_(n=0) ^∞ (((−1)^n )/(n!))∫_0 ^∞ e^(−Φ) Φ^n dΦ+(1/2)Σ_(n=0) ^∞ (1/(n!))∫_0 ^∞ e^(−Φ) Φ^n dΦ  =Σ_(n=0) ^∞ (−1)^n ((Γ(n+1))/(2n!))+Σ_(n=0) ^∞ ((Γ(n+1))/(2n!))
01cos(h(log(x))dx=01elogx+elogx2dx=1201n=0(logx)nn!+1201n=0(1)n(logx)nn!=12(n=01n!01(logx)n+n=0(1)nn!01(logx)n)=12n=01n!0ettn+12n=0(1)nn!0ettndtt=Φ=12n=0(1)nn!0eΦΦndΦ+12n=01n!0eΦΦndΦ=n=0(1)nΓ(n+1)2n!+n=0Γ(n+1)2n!
Commented by mnjuly1970 last updated on 29/Nov/20
thank you  so much  sir  payan .  question was corrected :  integrand: cos(h(xln(x)))
thankyousomuchsirpayan.questionwascorrected:integrand:cos(h(xln(x)))
Answered by Dwaipayan Shikari last updated on 29/Nov/20
∫_0 ^1 cos(h(xlogx))dx  =∫_0 ^1 ((e^(xlogx) +e^(−xlogx) )/2)dx  =(1/2)Σ_(n≥0) ^∞ ∫_0 ^1 (((xlogx)^n )/(n!))−(1/2)Σ_(n≥0) (−1)^n ∫_0 ^1 (((xlogx)^n )/(n!))      (t(n+1)=−Φ)  =(1/2)Σ_(n≥0) (1/(n!))∫_(−∞) ^0 e^((n+1)t) t^n dt−(1/2)Σ_(n≥0) (−1)^n (1/(n!))∫_(−∞) ^0 e^(t(n+1)) t^n dt        =(1/2)Σ_(n≥0) (1/(n!)) (((−1))/((n+1)^(n+1) ))∫_0 ^∞ e^(−Φ) Φ^n dΦ−(1/2)Σ_(n≥0) (((−1)^(2n) )/(n!(n+1)^(n+1) ))∫_0 ^∞ e^(−Φ) Φ^n dΦ  =(1/2)Σ_(n≥0) (((−1)^n )/((n+1)^(n+1) ))−(1/2)Σ_(n≥0) (1/((n+1)^((n+1))   ))  =(1/2)((1/1^1 )−(1/2^2 )+(1/3^3 )−(1/4^4 )+...−(1/1^1 )−(1/2^2 )−(1/3^3 )−(1/4^4 )+−..)  =−((1/2^2 )+(1/4^4 )+(1/6^6 )+(1/8^8 )+....)=−Σ_(n≥1) (1/((2n)^(2n) ))
01cos(h(xlogx))dx=01exlogx+exlogx2dx=12n001(xlogx)nn!12n0(1)n01(xlogx)nn!(t(n+1)=Φ)=12n01n!0e(n+1)ttndt12n0(1)n1n!0et(n+1)tndt=12n01n!(1)(n+1)n+10eΦΦndΦ12n0(1)2nn!(n+1)n+10eΦΦndΦ=12n0(1)n(n+1)n+112n01(n+1)(n+1)=12(111122+133144+111122133144+..)=(122+144+166+188+.)=n11(2n)2n
Commented by mnjuly1970 last updated on 29/Nov/20
peace be upon you   sir payan  tireless , powerful   and  unassuming.   grateful and god keep you..
peacebeuponyousirpayantireless,powerfulandunassuming.gratefulandgodkeepyou..
Commented by Dwaipayan Shikari last updated on 29/Nov/20
With pleasure sir! you are really great man
Withpleasuresir!youarereallygreatman

Leave a Reply

Your email address will not be published. Required fields are marked *