Menu Close

Nice-Calculus-Find-the-value-of-n-1-1-4-n-cos-2-pi-2-n-2-




Question Number 144311 by mnjuly1970 last updated on 24/Jun/21
        ......Nice    ....    Calculus......      Find the value of ::           Θ :=Σ_(n =1) ^∞ (1/(4^( n)  cos^( 2)  ((( π)/( 2^( n + 2) )) )  )) =?      ..........
Nice.CalculusFindthevalueof::Θ:=n=114ncos2(π2n+2)=?.
Commented by Kamel last updated on 24/Jun/21
  S_n =Σ_(k=1) ^n (1/(4^k cos^2 ((π/2^(k+2) )))), T_n =Σ_(k=1) ^n (1/(4^k sin^2 ((π/2^(k+2) ))))  So: S_n +T_n =Σ_(k=1) ^n (1/(4^k (sin((π/2^(k+2) ))cos((π/2^(k+2) )))^2 ))=Σ_(k=1) ^n (1/(4^(k−1) sin^2 ((π/2^(k+1) ))))                         =^(p=k−1) Σ_(p=0) ^(n−1) (1/(4^p sin^2 ((π/2^(p+2) ))))=2+T_n −(1/(4^n sin^2 ((π/2^(n+2) ))))  Then: S_n =2−(1/(4^n sin^2 ((π/2^(n+2) ))))  ∴  Σ_(n=1) ^(+∞) (1/(4^n cos^2 ((π/2^(n+2) ))))=2−lim_(n→+∞) ((1^ /(2^n sin((π/2^(n+2) )))))^2 =^(t=(π/2^(n+2) )) 2−lim_(t→0^+ ) ((4/π) (t/(sin(t))))^2   ∴  Σ_(n=1) ^(+∞) (1/(4^n cos^2 ((π/2^(n+2) ))))=2−((16)/π^2 )
Sn=nk=114kcos2(π2k+2),Tn=nk=114ksin2(π2k+2)So:Sn+Tn=nk=114k(sin(π2k+2)cos(π2k+2))2=nk=114k1sin2(π2k+1)=p=k1n1p=014psin2(π2p+2)=2+Tn14nsin2(π2n+2)Then:Sn=214nsin2(π2n+2)+n=114ncos2(π2n+2)=2limn+(12nsin(π2n+2))2=t=π2n+22limt0+(4πtsin(t))2+n=114ncos2(π2n+2)=216π2
Commented by mnjuly1970 last updated on 24/Jun/21
bravo mr kamel tashakor..
bravomrkameltashakor..
Answered by ArielVyny last updated on 24/Jun/21
Θ=Σ_(n=1) ^∞ (1/4^n )[1+tg^2 ((π/2^(n+2) ))]=Σ_(n=1) ^∞ ((1/4))^n +Σ_(n=1) ^∞ ((tg^2 ((π/2^(n+2) )))/4^n )  Θ=(4/3)+Σ_(n=1) ^∞ ((1/4))^n tg^2 ((π/(4×2^n )))  posons ((1/2))^n =t  Θ=(4/3)+Σ_(t=(1/2)) ^0 t^2 tg^2 ((π/4)t)=(4/3)−Σ_(t=0) ^(1/2) t^2 tg^2 ((π/4)t)  Θ=(4/3)−(1/2)Σ_(t=0) ^1 t^2 tg^2 ((π/4)t)  Θ=(4/3)−(1/2)  Θ=(5/6)
Θ=n=114n[1+tg2(π2n+2)]=n=1(14)n+n=1tg2(π2n+2)4nΘ=43+n=1(14)ntg2(π4×2n)posons(12)n=tΘ=43+0t=12t2tg2(π4t)=4312t=0t2tg2(π4t)Θ=43121t=0t2tg2(π4t)Θ=4312Θ=56
Commented by mathmax by abdo last updated on 25/Jun/21
not correct!
notcorrect!
Answered by abdullahoudou last updated on 24/Jun/21
1−(2/π)^2
1(2/π)2
Commented by ArielVyny last updated on 24/Jun/21
you can show that please?
youcanshowthatplease?

Leave a Reply

Your email address will not be published. Required fields are marked *