Menu Close

nice-calculus-if-b-gt-a-gt-0-then-prove-a-b-2-gt-b-a-ln-b-ln-a-gt-ab-




Question Number 128005 by mnjuly1970 last updated on 03/Jan/21
             ....nice   calculus...    if  b>a>0 then prove ::          ((a+b)/2)> ((b−a)/(ln(b)−ln(a))) > (√(ab))                   ............................
.nicecalculusifb>a>0thenprove::a+b2>baln(b)ln(a)>ab.
Answered by mindispower last updated on 06/Jan/21
⇔(((b/a)+1)/2)>(((b/a)−1)/(ln((b/a))))>(√(b/a))  (b/a)=x,x>1  ⇒((x+1)/2)=((x−1)/(ln(x)))>(√x)  ⇔ln(x)>((2(x−1))/(x+1))..1  &ln(x)<(√x)−(1/( (√x))),..2  1⇔f(x)=ln(x)−2+(4/(x+1))>0  f′(x)=(1/x)−(4/((x+1)^2 ))=(((x−1)^2 )/(x(x+1)^2 ))>0  f(x)>f(1),∀x>1  f(1)=ln(1)−2+(4/2)=0  ⇒1..true  2⇔g(x),(√x)−(1/( (√x)))−ln(x)>0  g′(x)=(1/(2(√x)))+(1/(2x(√x)))−(1/x)=((x+1−2(√x))/(2x(√x)))=((((√x)−1)^2 )/(2x(√x)))  g′(x)>0,g(1)=0⇒g(x)>g(1)=0,∀x>1  2..true  ⇒((b−a)/2)>((b−a)/(ln(b)−ln(a)))>(√(ab)),∀a,b   b>a>0
ba+12>ba1ln(ba)>baba=x,x>1x+12=x1ln(x)>xln(x)>2(x1)x+1..1&ln(x)<x1x,..21f(x)=ln(x)2+4x+1>0f(x)=1x4(x+1)2=(x1)2x(x+1)2>0f(x)>f(1),x>1f(1)=ln(1)2+42=01..true2g(x),x1xln(x)>0g(x)=12x+12xx1x=x+12x2xx=(x1)22xxg(x)>0,g(1)=0g(x)>g(1)=0,x>12..trueba2>baln(b)ln(a)>ab,a,bb>a>0

Leave a Reply

Your email address will not be published. Required fields are marked *