Menu Close

Nice-Calculus-if-n-0-1-x-n-1-x-dx-then-n-1-1-n-1-n-n-




Question Number 144231 by mnjuly1970 last updated on 23/Jun/21
                 .....Nice ...Calculus        if  ::           ϕ ( n ) := ∫_0 ^( 1) (x^( n) /(1 + x)) dx       then  ::   Σ_(n=1) ^( ∞) (((−1)^(n−1)  ϕ (n ))/n) =?         ........
..NiceCalculusif::φ(n):=01xn1+xdxthen::n=1(1)n1φ(n)n=?..
Answered by mathmax by abdo last updated on 23/Jun/21
ϕ(n)=∫_0 ^1  (x^n /(1+x))dx ⇒let S=Σ_(n=1) ^∞  (((−1)^(n−1) )/n)ϕ(n)  =Σ_(n=1) ^∞  (((−1)^(n−1) )/n)∫_0 ^1  (x^n /(1+x))dx =∫_0 ^1 (Σ_(n=1) ^∞  (((−1)^(n−1) )/n)(x^n /(1+x)))dx  =∫_0 ^1  ((w(x))/(1+x))dx with  w(x)=Σ_(n=1) ^∞  (((−1)^(n−1) )/n)x^n  ⇒  w^′ (x)=Σ_(n=1) ^∞ (−1)^(n−1)  x^(n−1)  =Σ_(n=1) ^∞ (−x)^(n−1)   =Σ_(n=0) ^∞ (−x)^n  =(1/(1+x)) ⇒w(x)=log(1+x)+c  w(0)=0=c ⇒w(x)=log(1+x) ⇒  S=∫_0 ^1 ((log(1+x))/(1+x))dx =[log^2 (1+x)]_0 ^1 −∫_0 ^1  ((log(1+x))/(1+x))dx ⇒  2∫_0 ^1  ((log(1+x))/(1+x))dx=log^2 (2) ⇒S=((log^2 (2))/2)
φ(n)=01xn1+xdxletS=n=1(1)n1nφ(n)=n=1(1)n1n01xn1+xdx=01(n=1(1)n1nxn1+x)dx=01w(x)1+xdxwithw(x)=n=1(1)n1nxnw(x)=n=1(1)n1xn1=n=1(x)n1=n=0(x)n=11+xw(x)=log(1+x)+cw(0)=0=cw(x)=log(1+x)S=01log(1+x)1+xdx=[log2(1+x)]0101log(1+x)1+xdx201log(1+x)1+xdx=log2(2)S=log2(2)2
Commented by mnjuly1970 last updated on 23/Jun/21
   thanks alot mr max...
thanksalotmrmax
Commented by mathmax by abdo last updated on 24/Jun/21
you are welcome sir.
youarewelcomesir.

Leave a Reply

Your email address will not be published. Required fields are marked *