Menu Close

nice-calculus-In-AB-C-prove-sin-A-2-sin-B-2-sin-C-2-1-8-max-cos-A-2-cos-B-2-cos-C-2-




Question Number 122636 by mnjuly1970 last updated on 18/Nov/20
          ...nice  calculus...     In  AB^Δ C  prove ::      ∗:  sin((A/2))sin((B/2))sin((C/2))≤(1/8)  .........................      ∗∗::   max(cos((A/2))cos((B/2))cos((C/2)))=?
nicecalculusInABCΔprove:::sin(A2)sin(B2)sin(C2)18.::max(cos(A2)cos(B2)cos(C2))=?
Answered by TANMAY PANACEA last updated on 18/Nov/20
 three points A,B and C lie on curve y=sin(x/2)  (A,sin(A/2))  (B,sin(B/2))and (C,sin(C/2))  centroid P (((A+B+C)/3),((sin(A/2)+sin(B/2)+sin(C/2))/3))  ordinate of centroid P=(((sin(A/2)+sin(B/2)+sin(C/2))/3))  pointQ={ (((A+B+C)/3))sin((((A+B+C)/3)/2))}lies  on y=sin((x/2))  sin(((A+B+C)/6))=ordinate of pointQ  sin(((A+B+C)/6))>((sin(A/2)+sin(B/2)+sin(C/2))/3)  using AM>GM  sin(((180^o )/6))>((sin(A/2)+sin(B/2)+sin(C/2))/3)>(sin(A/2)sin(B/2)sin(C/2))^(1/3)   ((1/2))^3 >(sin(A/2)sin(B/2)sin(C/2))  proved
threepointsA,BandClieoncurvey=sinx2(A,sinA2)(B,sinB2)and(C,sinC2)centroidP(A+B+C3,sinA2+sinB2+sinC23)ordinateofcentroidP=(sinA2+sinB2+sinC23)pointQ={(A+B+C3)sin(A+B+C32)}liesony=sin(x2)sin(A+B+C6)=ordinateofpointQsin(A+B+C6)>sinA2+sinB2+sinC23usingAM>GMsin(180o6)>sinA2+sinB2+sinC23>(sinA2sinB2sinC2)13(12)3>(sinA2sinB2sinC2)proved
Commented by TANMAY PANACEA last updated on 18/Nov/20
same method for cosθ curve  final step  cos(((180^o )/6))>(cos(A/2)cos(B/2)cos(C/2))^(1/3)   (((√3)/2))^3 >(cos(A/2)cos(B/2)cos(C/2))  ((3(√3))/2)>(cos(A/2)cos(B/2)cos(C/2))
samemethodforcosθcurvefinalstepcos(180o6)>(cosA2cosB2cosC2)13(32)3>(cosA2cosB2cosC2)332>(cosA2cosB2cosC2)
Commented by mnjuly1970 last updated on 18/Nov/20
thank you sir tanmay...    excellent...
thankyousirtanmayexcellent
Commented by TANMAY PANACEA last updated on 18/Nov/20
most welcome
mostwelcome

Leave a Reply

Your email address will not be published. Required fields are marked *