Menu Close

nice-calculus-please-evaluate-0-pi-2-e-x-e-x-sin-x-cos-x-dx-2-0-pi-2-e-x-sin-x-cos-x-dx-0-




Question Number 116627 by mnjuly1970 last updated on 05/Oct/20
                        ...  nice   calculus...          please   evaluate ::                    Φ = (((∫_0 ^( (π/2)) ((e^x +e^(−x) )/(sin(x)+cos(x)))dx)^2 )/((∫_0 ^( (π/2)) (e^x /(sin(x)+cos(x)))dx)(∫_0 ^( (π/2)) (e^(−x) /(sin(x)+cos(x)))dx))) =???            m.n.1970
nicecalculuspleaseevaluate::Φ=(0π2ex+exsin(x)+cos(x)dx)2(0π2exsin(x)+cos(x)dx)(0π2exsin(x)+cos(x)dx)=???m.n.1970
Answered by mindispower last updated on 05/Oct/20
∫_0 ^(π/2) (e^x /(sin(x)+cos(x)))dx=J  =∫_0 ^(π/2) (e^((π/2)−x) /(cos(x)+sin(x)))dx  =e^(π/2) ∫_0 ^(π/2) (e^(−x) /(sin(x)+cos(x)))=e^(π/2) I  Φ=(((J+I)^2 )/(I.J))=(((Ie^(π/2) +I)^2 )/(I.e^(π/2) I))=(((e^(π/2) +1)^2 )/e^(π/2) )  =e^(π/2) +e^(−(π/2)) +2=2(ch((π/2))+1)
0π2exsin(x)+cos(x)dx=J=0π2eπ2xcos(x)+sin(x)dx=eπ20π2exsin(x)+cos(x)=eπ2IΦ=(J+I)2I.J=(Ieπ2+I)2I.eπ2I=(eπ2+1)2eπ2=eπ2+eπ2+2=2(ch(π2)+1)
Commented by mnjuly1970 last updated on 05/Oct/20
vood for you
voodforyou
Answered by Dwaipayan Shikari last updated on 05/Oct/20
I=∫_0 ^(π/2) ((e^x +e^(−x) )/(sinx+cosx))dx  I_1 =∫_0 ^(π/2) (e^x /(sinx+cosx))dx=∫_0 ^(π/2) (e^((π/2)−x) /(sinx+cosx))dx=e^(π/2) ∫_0 ^(π/2) (e^(−x) /(sinx+cosx))dx  I_2 =∫_0 ^(π/2) (e^(−x) /(sinx+cosx))dx  I_2 =e^(π/2) I_1   I_1 +I_2 =I  (By observation)  Φ=(((I)^2 )/(I_1 I_2 ))=(((I_1 +I_2 )^2 )/(I_1 ^2 e^(π/2) ))=(((e^(π/2) +1)^2 )/e^(π/2) )=i^i .((i)^(1/i) +1)^2
I=0π2ex+exsinx+cosxdxI1=0π2exsinx+cosxdx=0π2eπ2xsinx+cosxdx=eπ20π2exsinx+cosxdxI2=0π2exsinx+cosxdxI2=eπ2I1I1+I2=I(Byobservation)Φ=(I)2I1I2=(I1+I2)2I12eπ2=(eπ2+1)2eπ2=ii.(ii+1)2
Commented by Dwaipayan Shikari last updated on 05/Oct/20
i^i =e^(−(π/2))    and (i)^(1/i) =i^(1/i) =i^(−i) =e^(π/2)
ii=eπ2andii=i1i=ii=eπ2

Leave a Reply

Your email address will not be published. Required fields are marked *