Menu Close

nice-calculus-please-prove-0-x-1-2-x-2-2x-5-dx-pi-where-is-Golden-ratio-




Question Number 124201 by mnjuly1970 last updated on 01/Dec/20
              :::  nice  calculus :::       please  prove :::      Ω = ∫_0 ^( ∞) (x^(1/2) /(x^2 +2x+5))dx=(π/( (√ϕ)))       where  ϕ  is Golden ratio...
:::nicecalculus:::pleaseprove:::Ω=0x12x2+2x+5dx=πφwhereφisGoldenratio
Answered by ajfour last updated on 02/Dec/20
I=∫(((√x)dx)/((x+1)^2 +(2ϕ−1)^2 ))  let  (√x)=t ⇒  (√x)dx=2t^2 dt  I=∫((2t^2 dt)/((t^2 +1)^2 +(2ϕ−1)^2 ))  let  t=(1/z)  ⇒  dt=−(dz/z^2 )  I=∫((2dz)/((1+z^2 )^2 +(2ϕ−1)^2 z^4 ))    = ∫((2dz)/(6z^4 +2z^2 +1))  = (1/3)∫(dz/((z^2 +(1/6))^2 +(((√5)/6))^2 ))  ....
I=xdx(x+1)2+(2φ1)2letx=txdx=2t2dtI=2t2dt(t2+1)2+(2φ1)2lett=1zdt=dzz2I=2dz(1+z2)2+(2φ1)2z4=2dz6z4+2z2+1=13dz(z2+16)2+(56)2.
Commented by mindispower last updated on 02/Dec/20
sir ajfour your methode  worcks since 6 z^4  +2z^2 +1 can bee factorised  in polynoms of degree 2  and∫(dx/(x^2 +ax+b)) can bee solved
sirajfouryourmethodeworckssince6z4+2z2+1canbeefactorisedinpolynomsofdegree2anddxx2+ax+bcanbeesolved
Commented by mnjuly1970 last updated on 03/Dec/20
thanking  for your effort  sir ajfor..
thankingforyoureffortsirajfor..
Commented by mnjuly1970 last updated on 03/Dec/20
Answered by mindispower last updated on 02/Dec/20
Δ=∫_(−∞) ^∞ (z^(1/2) /(z^2 +2z+5))dz=∫_(−∞) ^0 (z^(1/2) /(z^2 +2z+5))dz+Ω  =i∫_0 ^∞ (z^(1/2) /(z^2 −2z+5))dz+Ω=Ω+it,Ω,t∈R  Δ=2iπRes((z^(1/2) /(z^2 +2z+5)),z=−1+2i)  .=2iπ(((−1+2i)^(1/2) )/(2(−1+2i)+2))=(π/2)(−1+2i)^(1/2)   (−1+2i)^(1/2) =x+iy  ⇒xy=1,x^2 +y^2 =(√5),x^2 −y^2 =−1  x=((((√5)−1)/2))^(1/2) ,y=(2/( (√5)−1))=((((√5)+1)/2))^(1/2)   x=(√(ϕ−1)),y=(√ϕ)  Δ=(π/2)(√(ϕ−1))+(π/2)i(√ϕ)  Ω=Re(Δ)=(π/2)(√(ϕ−1))  ϕ^2 =ϕ+1⇒ϕ(ϕ−1)=1  ⇒(√(ϕ−1))=(1/( (√ϕ)))  Ω=(π/2)(√(ϕ−1))=(π/(2(√ϕ)))
Δ=z12z2+2z+5dz=0z12z2+2z+5dz+Ω=i0z12z22z+5dz+Ω=Ω+it,Ω,tRΔ=2iπRes(z12z2+2z+5,z=1+2i).=2iπ(1+2i)122(1+2i)+2=π2(1+2i)12(1+2i)12=x+iyxy=1,x2+y2=5,x2y2=1x=(512)12,y=251=(5+12)12x=φ1,y=φΔ=π2φ1+π2iφΩ=Re(Δ)=π2φ1φ2=φ+1φ(φ1)=1φ1=1φΩ=π2φ1=π2φ
Commented by mnjuly1970 last updated on 02/Dec/20
excellent
excellent

Leave a Reply

Your email address will not be published. Required fields are marked *