Menu Close

nice-calculus-please-prove-that-0-1-Arctan-x-1-x-dx-pi-8-log-2-




Question Number 129806 by mnjuly1970 last updated on 19/Jan/21
               ... nice   calculus ...     please  prove that ::      Φ = ∫_0 ^( 1) ((Arctan(x))/(1+x)) dx=(π/8) log(2) ...
nicecalculuspleaseprovethat::Φ=01Arctan(x)1+xdx=π8log(2)
Answered by Dwaipayan Shikari last updated on 19/Jan/21
[tan^(−1) (x)log(x+1)]_0 ^1 −∫_0 ^1 ((log(x+1))/(x^2 +1))dx  =(π/4)log(2)−∫_0 ^(π/4)  log(1+tanθ)dθ  =(π/4)log(2)−(π/8)log(2)  =(π/8)log(2)
[tan1(x)log(x+1)]0101log(x+1)x2+1dx=π4log(2)0π4log(1+tanθ)dθ=π4log(2)π8log(2)=π8log(2)
Commented by mnjuly1970 last updated on 19/Jan/21
nice very nice..
niceverynice..
Answered by mnjuly1970 last updated on 19/Jan/21
Answered by mathmax by abdo last updated on 19/Jan/21
Φ=∫_0 ^1  ((arctanx)/(1+x))dx by parts Φ=[ln(1+x)arctanx]_0 ^1 −∫_0 ^1 ln(1+x)×(dx/(1+x^2 ))  =(π/4)ln(2)−∫_0 ^1  ((ln(1+x))/(1+x^2 ))dx  we hsve  ∫_0 ^1  ((ln(1+x))/(1+x^2 ))dx =_(x=tanθ)    ∫_0 ^(π/4)  ((ln(1+tanθ))/(1+tan^2 θ))(1+tan^2 θ)dθ  =∫_0 ^(π/4)  ln(1+tanθ)dθ  =_(θ=(π/4)−u)   ∫_0 ^(π/4)  ln(1+((1−tanu)/(1+tanu)))du  =∫_0 ^(π/4) ln((2/(1+tanu)))du =(π/4)ln(2)−∫_0 ^(π/4) ln(1+tanu)du ⇒  ∫_0 ^(π/4) ln(1+tanθ)dθ =(π/8)ln(2) ⇒  Φ=(π/4)ln(2)−(π/8)ln(2) =(π/8)ln(2)
Φ=01arctanx1+xdxbypartsΦ=[ln(1+x)arctanx]0101ln(1+x)×dx1+x2=π4ln(2)01ln(1+x)1+x2dxwehsve01ln(1+x)1+x2dx=x=tanθ0π4ln(1+tanθ)1+tan2θ(1+tan2θ)dθ=0π4ln(1+tanθ)dθ=θ=π4u0π4ln(1+1tanu1+tanu)du=0π4ln(21+tanu)du=π4ln(2)0π4ln(1+tanu)du0π4ln(1+tanθ)dθ=π8ln(2)Φ=π4ln(2)π8ln(2)=π8ln(2)

Leave a Reply

Your email address will not be published. Required fields are marked *