Question Number 129806 by mnjuly1970 last updated on 19/Jan/21

Answered by Dwaipayan Shikari last updated on 19/Jan/21
![[tan^(−1) (x)log(x+1)]_0 ^1 −∫_0 ^1 ((log(x+1))/(x^2 +1))dx =(π/4)log(2)−∫_0 ^(π/4) log(1+tanθ)dθ =(π/4)log(2)−(π/8)log(2) =(π/8)log(2)](https://www.tinkutara.com/question/Q129812.png)
Commented by mnjuly1970 last updated on 19/Jan/21

Answered by mnjuly1970 last updated on 19/Jan/21

Answered by mathmax by abdo last updated on 19/Jan/21
![Φ=∫_0 ^1 ((arctanx)/(1+x))dx by parts Φ=[ln(1+x)arctanx]_0 ^1 −∫_0 ^1 ln(1+x)×(dx/(1+x^2 )) =(π/4)ln(2)−∫_0 ^1 ((ln(1+x))/(1+x^2 ))dx we hsve ∫_0 ^1 ((ln(1+x))/(1+x^2 ))dx =_(x=tanθ) ∫_0 ^(π/4) ((ln(1+tanθ))/(1+tan^2 θ))(1+tan^2 θ)dθ =∫_0 ^(π/4) ln(1+tanθ)dθ =_(θ=(π/4)−u) ∫_0 ^(π/4) ln(1+((1−tanu)/(1+tanu)))du =∫_0 ^(π/4) ln((2/(1+tanu)))du =(π/4)ln(2)−∫_0 ^(π/4) ln(1+tanu)du ⇒ ∫_0 ^(π/4) ln(1+tanθ)dθ =(π/8)ln(2) ⇒ Φ=(π/4)ln(2)−(π/8)ln(2) =(π/8)ln(2)](https://www.tinkutara.com/question/Q129831.png)