Menu Close

nice-calculus-prove-that-0-1-1-1-x-1-2-x-2-ln-1-x-dx-2-1-log-2-




Question Number 124064 by mnjuly1970 last updated on 30/Nov/20
         ... nice  calculus...       prove   that:::       ∫_0 ^( 1) {((1+(1−x)^(1/2) )/x) +(2/(ln(1−x)))}dx              =^(???) 2(γ−1+log(2))
nicecalculusprovethat:::01{1+(1x)12x+2ln(1x)}dx=???2(γ1+log(2))
Answered by mindispower last updated on 01/Dec/20
let ln(1−x)=−t  ⇔∫_0 ^∞ {((1+e^(−(t/2)) )/(1−e^(−t) ))−(2/t)}e^(−t) dt  =∫_0 ^∞ −((2e^(−t) )/t)+((1+e^(−(t/2)) )/(1−e^(−t) ))e^(−t) dt  =−2∫{(e^(−t) /t)−(1/2)((1+e^(−(t/2)) )/(1−e^(−t) ))e^(−t) }dt  =−2∫(e^(−t) /t)−(e^(−3(t/(2 ))) /(1−e^(−t) ))+(1/2).((e^(−(t/2)) −1)/(1−e^(−t) )).e^(−t) dt  =−2∫_0 ^∞ {(e^(−t) /t)−(e^(−3(t/2)) /(1−e^(−t) ))}dt+∫_0 ^∞ ((1−e^(−(t/2)) )/(1−e^(−t) ))e^(−t) dt  Ψ(z)=∫_0 ^∞ ((e^(−t) /t)−(e^(−zt) /(1−e^(−t) )))dt  we get   −2Ψ((3/2))+∫_0 ^∞ ((e^(−t) dt)/(1+e^(−(t/2)) ))=−2Ψ((3/2))+A  A=∫_0 ^∞ {e^(−(t/2)) −1+(1/(1+e^(−(t/2)) ))}dt  A=lim_(x→∞) ∫_0 ^x {e^(−(t/2)) −1+(1/(1+e^(−(t/2)) ))}dt  =lim_(x→∞) [−2e^(−(x/2)) +2−x+2ln(e^(x/2) +1)−2ln(2)]  =lim_(x→∞) [2−x+2.(x/2)+2ln(1+e^(−(x/2)) )−2ln(2)]  =2−2ln(2)  Ψ((3/2))=Ψ((1/2))+2=−2ln(2)−γ+2  we get −2(−2ln(2)−γ)+2−2ln(2)  =2ln(2)+2γ−2=2(−1+γ+ln(2))  ∫((1+(√(1−x)))/x)+(2/(ln(1−x)))dx=2(γ−1+ln(2))
letln(1x)=t0{1+et21et2t}etdt=02ett+1+et21etetdt=2{ett121+et21etet}dt=2ette3t21et+12.et211et.etdt=20{ette3t21et}dt+01et21etetdtΨ(z)=0(ettezt1et)dtweget2Ψ(32)+0etdt1+et2=2Ψ(32)+AA=0{et21+11+et2}dtA=limx0x{et21+11+et2}dt=limx[2ex2+2x+2ln(ex2+1)2ln(2)]=limx[2x+2.x2+2ln(1+ex2)2ln(2)]=22ln(2)Ψ(32)=Ψ(12)+2=2ln(2)γ+2weget2(2ln(2)γ)+22ln(2)=2ln(2)+2γ2=2(1+γ+ln(2))1+1xx+2ln(1x)dx=2(γ1+ln(2))
Commented by mnjuly1970 last updated on 01/Dec/20
grateful  sir  mindspower...
gratefulsirmindspower
Commented by mindispower last updated on 02/Dec/20
withe pleasur sir
withepleasursir
Answered by mnjuly1970 last updated on 01/Dec/20
solution    we know that  ..     i: ∫_0 ^( 1) ((1/(ln(x)))+(1/(1−x)))dx=_([IMAGE⇓⇓]) ^(why?)  γ ✓     ii:∫_0 ^( 1) ((t^n −1)/(ln(t)))dt=^(why?) ln(n+1) ✓     Φ=∫_0 ^( 1) (((1+(√(1−x)))/x)+(2/(ln(1−x))))dx  =^(1−x=t^2 ) 2∫_0 ^( 1) {((1+t)/(1−t^2 ))+(2/(2ln(t)))}tdt        =2∫_0 ^( 1) ((1/(1−t))+(1/(ln(t))))tdt        =2∫_0 ^( 1) (((t−1+1)/(1−t))+((t+1−1)/(ln(t))))dt        =2∫_0 ^( 1) ((1/(1−t))+(1/(ln(t))))dt−2+∫_0 ^( 1) ((t^1 −1)/(ln(t)))dt      =2γ−2+ln(2)=2(γ−1+ln(2))✓
solutionweknowthat..i:01(1ln(x)+11x)dx=why?[IMAGE⇓⇓]γii:01tn1ln(t)dt=why?ln(n+1)Φ=01(1+1xx+2ln(1x))dx=1x=t2201{1+t1t2+22ln(t)}tdt=201(11t+1ln(t))tdt=201(t1+11t+t+11ln(t))dt=201(11t+1ln(t))dt2+01t11ln(t)dt=2γ2+ln(2)=2(γ1+ln(2))
Commented by mnjuly1970 last updated on 01/Dec/20
Commented by mnjuly1970 last updated on 01/Dec/20

Leave a Reply

Your email address will not be published. Required fields are marked *