Menu Close

nice-calculus-prove-that-0-1-ln-1-x-2-x-dx-pi-2-12-m-n-1970-




Question Number 122525 by mnjuly1970 last updated on 17/Nov/20
               ... nice  calculus...    prove that   :::::≫   Ψ=∫_0 ^( 1) ((ln(1−x))/(2−x))dx=−(π^2 /(12)) ✓              ... m.n.1970...
nicecalculusprovethat:::::≫Ψ=01ln(1x)2xdx=π212m.n.1970
Answered by Dwaipayan Shikari last updated on 17/Nov/20
∫_0 ^1 ((log(1−x))/(2−x))dx=∫_0 ^1 ((log(x))/(1+x))dx  =∫_0 ^1 log(x)Σ_(n=0) ^∞ (−1)^n x^n   =Σ_(n=0) ^∞ (−1)^n ∫_0 ^1 x^n logxdx  =Σ_(n≥0) ^∞ (−1)^n (−∫_0 ^1 (x^n /((n+1)))dx)  =−Σ_(n≥0) ^∞ (−1)^n (1/((n+1)^2 ))=−(π^2 /(12))
01log(1x)2xdx=01log(x)1+xdx=01log(x)n=0(1)nxn=n=0(1)n01xnlogxdx=n0(1)n(01xn(n+1)dx)=n0(1)n1(n+1)2=π212
Commented by mnjuly1970 last updated on 17/Nov/20
perfect...
perfect

Leave a Reply

Your email address will not be published. Required fields are marked *