Menu Close

nice-calculus-prove-that-0-1-ln-1-x-ln-1-x-2-x-11-3-8-




Question Number 123462 by mnjuly1970 last updated on 25/Nov/20
             ...nice   calculus...        prove  that ::         Ω=∫_0 ^( 1) ((ln(1−x)ln(1−x^2 ))/x) =^(??) ((11ζ( 3 ))/8)                   .................
nicecalculusprovethat::Ω=01ln(1x)ln(1x2)x=??11ζ(3)8..
Answered by Lordose last updated on 25/Nov/20
  Ω = ∫_( 0) ^( 1) ((ln(1−x)(ln(1−x)+ln(1+x)))/x)dx  Ω = ∫_( 0) ^( 1) ((ln^2 (1−x))/x)dx + ∫_0 ^( 1) ((ln(1−x)ln(1+x))/x)dx  Ω = 2ζ(3) − ((5ζ(3))/8)  Ω = ((11ζ(3))/8)
Ω=01ln(1x)(ln(1x)+ln(1+x))xdxΩ=01ln2(1x)xdx+01ln(1x)ln(1+x)xdxΩ=2ζ(3)5ζ(3)8Ω=11ζ(3)8
Commented by Dwaipayan Shikari last updated on 25/Nov/20
∫_0 ^1 ((log^2 (1−x))/x)dx  =∫_0 ^1 ((log^2 x)/(1−x))dx  =∫_0 ^1 log^2 x Σ_(n=0) ^∞ x^n =Σ_(n=0) ^∞ ∫_0 ^1 x^n log^2 (x)      logx=t  =Σ_(n=0) ^∞ ∫_(−∞) ^0 t^2 e^((n+1)x) dx          (n+1)x=−Φ  =−Σ_(n=0) ^∞ (1/((n+1)^3 ))∫_∞ ^0 Φ^2 e^(−Φ) dΦ =Σ_(n=0) ^∞ (1/((n+1)^3 )).Γ(3)=2ζ(3)
01log2(1x)xdx=01log2x1xdx=01log2xn=0xn=n=001xnlog2(x)logx=t=n=00t2e(n+1)xdx(n+1)x=Φ=n=01(n+1)30Φ2eΦdΦ=n=01(n+1)3.Γ(3)=2ζ(3)
Commented by mnjuly1970 last updated on 26/Nov/20
thank you
thankyou
Commented by mnjuly1970 last updated on 26/Nov/20
thank you..
thankyou..

Leave a Reply

Your email address will not be published. Required fields are marked *