Menu Close

nice-calculus-prove-that-0-1-ln-2-1-x-x-dx-3-4-m-n-




Question Number 122035 by mnjuly1970 last updated on 13/Nov/20
              ...nice calculus...          prove  that :                          ∫_0 ^( 1) ((ln^2 (1+x))/x)dx=^(??) ((ζ(3))/4)                 .m.n.
nicecalculusprovethat:01ln2(1+x)xdx=??ζ(3)4.m.n.
Answered by mindispower last updated on 14/Nov/20
∫u^2 e^(−u)   −u^2 e^(−u) −2ue^(−u) −2e^(−u)   ∫_0 ^(ln(2)) (u^2 /(e^u −1))e^u du  =∫_0 ^(ln(2)) Σ_(n≥0) u^2 e^(−nu) du=((ln^3 (2))/3)  +Σ_(n≥1) ∫_0 ^(ln(2)) u^2 e^(−nu) du=Σ_(n≥1) (1/n^3 )∫_0 ^(nln(2)) x^2 e^(−x) dx  =((ln^3 (2))/3)+Σ_(n≥1) (1/n^3 )[−x^2 e^(−x) −2xe^(−x) −2e^(−x) ]_0 ^(nln(2))   =((ln^3 (2))/3)+Σ_(n≥1) [−n^2 ln^2 (2).(1/2^n )−((2nln(2))/2^n )−2.(1/2^n )+2].(1/n^3 )  =((ln^3 (2))/3)−ln^2 (2)Σ_(n≥1) (1/(n.2^n ))−2ln(2)Σ_(n≥1) (1/(n^2 2^n ))−2Σ_(n≥1) (1/(n^3 2^n ))+2ζ(3)  =−((2ln^3 (2))/3)−2ln(2)Li_2 ((1/2))−2Li_3 ((1/2))+2ζ(3)  −2((ln^3 (2))/3)−2ln(2)((π^2 /(12))−(1/2)ln^2 (2))−2(((ln^3 (2))/6)−((π^2 ln(2))/(12))+(7/8)ζ(3))+2ζ(3)  =−(7/4)ζ(3)+2ζ(3)=(1/4)ζ(3)  Li_2 ((1/2))=(π^2 /(12))−((ln^2 (2))/2),Li_3 ((1/2))=((ln^3 (2))/6)−((π^2 ln(2))/(12))+((7ζ(3))/8)
u2euu2eu2ueu2eu0ln(2)u2eu1eudu=0ln(2)n0u2enudu=ln3(2)3+n10ln(2)u2enudu=n11n30nln(2)x2exdx=ln3(2)3+n11n3[x2ex2xex2ex]0nln(2)=ln3(2)3+n1[n2ln2(2).12n2nln(2)2n2.12n+2].1n3=ln3(2)3ln2(2)n11n.2n2ln(2)n11n22n2n11n32n+2ζ(3)=2ln3(2)32ln(2)Li2(12)2Li3(12)+2ζ(3)2ln3(2)32ln(2)(π21212ln2(2))2(ln3(2)6π2ln(2)12+78ζ(3))+2ζ(3)=74ζ(3)+2ζ(3)=14ζ(3)Li2(12)=π212ln2(2)2,Li3(12)=ln3(2)6π2ln(2)12+7ζ(3)8
Commented by mnjuly1970 last updated on 14/Nov/20
Commented by mnjuly1970 last updated on 14/Nov/20
thank you mr power
thankyoumrpower
Commented by mindispower last updated on 14/Nov/20
hello sir realy nice please sir  have you solution for Σ(1/(n^2 cos((π/2^n ))))
hellosirrealynicepleasesirhaveyousolutionforΣ1n2cos(π2n)

Leave a Reply

Your email address will not be published. Required fields are marked *