Menu Close

nice-calculus-prove-that-0-1-x-1-ln-x-2-dx-5-ln-m-n-




Question Number 122882 by mnjuly1970 last updated on 20/Nov/20
         ...  nice  calculus...      prove that :::         Ω=∫_0 ^( 1) (((x^ϕ −1)/(ln(x))))^2 dx=(√5) ln(ϕ)                     .m.n.
nicecalculusprovethat:::Ω=01(xφ1ln(x))2dx=5ln(φ).m.n.
Answered by TANMAY PANACEA last updated on 20/Nov/20
f(ϕ)=∫_0 ^1 ((x^ϕ −1)/(lnx))dx  (df/dϕ)=∫_0 ^1 ((x^ϕ lnx)/(lnx))dx=∣(x^(ϕ+1) /(ϕ+1))∣_0 ^1 =(1/(ϕ+1))  df=(dϕ/(ϕ+1))  f=ln(ϕ+1)+C  when ϕ=0  f(ϕ)=0  C=0  f(ϕ)=ln(ϕ+1)  wait...
f(φ)=01xφ1lnxdxdfdφ=01xφlnxlnxdx=∣xφ+1φ+101=1φ+1df=dφφ+1f=ln(φ+1)+Cwhenφ=0f(φ)=0C=0f(φ)=ln(φ+1)wait
Commented by mnjuly1970 last updated on 21/Nov/20
thank you mr tanmay for your  effort   with your permission   i present the solution.  note :ln(N)=∫_0 ^( 1) ((x^(N−1) −1)/(ln(x)))dx   f(a)=∫_0 ^( 1) (((x^a −1)^2 )/(ln^2 (x)))dx   f ′(a)=∫_0 ^( 1) (∂/∂a)[(((x^a −1)^2 )/(ln^2 (x)))]  =∫_0 ^( 1) ((2(x^a −1)x^a ln(x))/(ln^2 (x)))dx=2∫_0 ^( 1) ((x^(2a) −x^a )/(ln(x)))dx  =2∫_0 ^( 1) ((x^(2a) −1)/(ln(x))) +2∫_0 ^( 1) ((1−x^a )/(ln(x)))dx  =2ln(2a+1)−2ln(a+1)  f(a)=2∫^  ln(2a+1)da−2∫ln(a+1)da+C  =(2a+1)ln(2a+1)−(2a+1)     −2(a+1)ln(a+1)+2(a+1)+C  f(0)=1+C⇒C=−1  f(a)=(2a+1)ln(2a+1)−2(a+1)ln(a+1)+1−1      Ω=f(ϕ)=(2ϕ+1)ln(2ϕ+1)−2(ϕ+1)ln(ϕ+1)    ϕ: is golden ratio     and  we know: ϕ^2 =ϕ+1  =(ϕ^2 +ϕ)ln(ϕ^2 +ϕ)−2ϕ^2 ln(ϕ^2 )  =ϕ^3 ln(ϕ^3 )−4ϕ^2 ln(ϕ)  =(3ϕ^3 −4ϕ^2 )ln(ϕ)=(3ϕ^2 +3ϕ−4ϕ^2 )ln(ϕ)  =(−ϕ^2 +3ϕ)ln(ϕ)=(−ϕ−1+3ϕ)ln(ϕ)   =(2ϕ−1)ln(ϕ)=(2(((1+(√5))/2))−1)ln(ϕ)  =(√5) ln(ϕ)  ✓ ✓✓
thankyoumrtanmayforyoureffortwithyourpermissionipresentthesolution.note:ln(N)=01xN11ln(x)dxf(a)=01(xa1)2ln2(x)dxf(a)=01a[(xa1)2ln2(x)]=012(xa1)xaln(x)ln2(x)dx=201x2axaln(x)dx=201x2a1ln(x)+2011xaln(x)dx=2ln(2a+1)2ln(a+1)f(a)=2ln(2a+1)da2ln(a+1)da+C=(2a+1)ln(2a+1)(2a+1)2(a+1)ln(a+1)+2(a+1)+Cf(0)=1+CC=1f(a)=(2a+1)ln(2a+1)2(a+1)ln(a+1)+11Ω=f(φ)=(2φ+1)ln(2φ+1)2(φ+1)ln(φ+1)φ:isgoldenratioandweknow:φ2=φ+1=(φ2+φ)ln(φ2+φ)2φ2ln(φ2)=φ3ln(φ3)4φ2ln(φ)=(3φ34φ2)ln(φ)=(3φ2+3φ4φ2)ln(φ)=(φ2+3φ)ln(φ)=(φ1+3φ)ln(φ)=(2φ1)ln(φ)=(2(1+52)1)ln(φ)=5ln(φ)

Leave a Reply

Your email address will not be published. Required fields are marked *