Menu Close

nice-calculus-prove-that-0-1-xln-ln-x-ln-1-x-dx-euler-mascheroni-constant-




Question Number 114721 by mnjuly1970 last updated on 20/Sep/20
          ....nice  calculus....    prove  that::                             Φ=∫_(0 ) ^( 1) xln[ln(x).ln(1−x)]dx=−γ                             γ ::= euler  mascheroni constant.                                         ...m.n.july.1970...
.nicecalculus.provethat::Φ=01xln[ln(x).ln(1x)]dx=γγ::=eulermascheroniconstant.m.n.july.1970
Answered by maths mind last updated on 20/Sep/20
by part  =∫_0 ^1 (1−x)ln[ln(1−x)ln(x)]dx  ⇔2∫_0 ^1 xln(ln(x)ln(1−x))dx=∫_0 ^1 ln[ln(x)ln(1−x)]dx  =∫_0 ^1 ln(−ln(x).−ln(1−x))dx  =∫_0 ^1 ln(−ln(x))dx+∫_0 ^1 ln(−ln(1−x))dx  in 2nd 1−x=t⇒  =2∫_0 ^1 ln(−ln(x))dx  t=−ln(x)  =2∫_0 ^∞ ln(t)e^(−t) dt  Γ(x)=∫_0 ^∞ t^(x−1) e^(−t) dt  Γ′(1)=∫_0 ^∞ ln(t)e^(−t) dt=Ψ(1)=−γ  ⇔2∫_0 ^1 xln[ln(x)ln(1−x)]dx=2∫_0 ^1 ln(−ln(x))dx=−2γ  ⇒∫_0 ^1 xln[ln(x)ln(1−x)]dx=−γ
bypart=01(1x)ln[ln(1x)ln(x)]dx201xln(ln(x)ln(1x))dx=01ln[ln(x)ln(1x)]dx=01ln(ln(x).ln(1x))dx=01ln(ln(x))dx+01ln(ln(1x))dxin2nd1x=t=201ln(ln(x))dxt=ln(x)=20ln(t)etdtΓ(x)=0tx1etdtΓ(1)=0ln(t)etdt=Ψ(1)=γ201xln[ln(x)ln(1x)]dx=201ln(ln(x))dx=2γ01xln[ln(x)ln(1x)]dx=γ
Commented by mnjuly1970 last updated on 20/Sep/20
 excellent sir..thank you ...
excellentsir..thankyou
Commented by maths mind last updated on 20/Sep/20
withe pleasur
withepleasur
Answered by mnjuly1970 last updated on 20/Sep/20
my solution..        Φ =∫_0 ^( 1) xln[(−ln(x))(−ln (1−x))]dx  =∫_0 ^( 1) xln(−ln(x))dx +∫_0 ^( 1) xln(−ln(1−x))dx  =∫_0 ^( 1) xln(−ln(x))dx +∫_0 ^( 1) (1−x)ln(−ln(x))dx   =∫_0 ^( 1) ln(−ln(x))dx=^([−ln(x)=t])  −∫_∞ ^(  0) e^(−t) ln(t)dt   =∫_0 ^( ∞) e^(−t) ln(t)dt = −γ    ✓            m.n.july.1970
mysolution..Φ=01xln[(ln(x))(ln(1x))]dx=01xln(ln(x))dx+01xln(ln(1x))dx=01xln(ln(x))dx+01(1x)ln(ln(x))dx=01ln(ln(x))dx=[ln(x)=t]0etln(t)dt=0etln(t)dt=γm.n.july.1970

Leave a Reply

Your email address will not be published. Required fields are marked *