Question Number 114721 by mnjuly1970 last updated on 20/Sep/20
$$\:\:\:\:\:\:\:\:\:\:….{nice}\:\:{calculus}…. \\ $$$$\:\:{prove}\:\:{that}:: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Phi=\int_{\mathrm{0}\:} ^{\:\mathrm{1}} {xln}\left[{ln}\left({x}\right).{ln}\left(\mathrm{1}−{x}\right)\right]{dx}=−\gamma \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\gamma\:::=\:{euler}\:\:{mascheroni}\:{constant}. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:…{m}.{n}.{july}.\mathrm{1970}… \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$
Answered by maths mind last updated on 20/Sep/20
$${by}\:{part} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−{x}\right){ln}\left[{ln}\left(\mathrm{1}−{x}\right){ln}\left({x}\right)\right]{dx} \\ $$$$\Leftrightarrow\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} {xln}\left({ln}\left({x}\right){ln}\left(\mathrm{1}−{x}\right)\right){dx}=\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left[{ln}\left({x}\right){ln}\left(\mathrm{1}−{x}\right)\right]{dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(−{ln}\left({x}\right).−{ln}\left(\mathrm{1}−{x}\right)\right){dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(−{ln}\left({x}\right)\right){dx}+\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(−{ln}\left(\mathrm{1}−{x}\right)\right){dx} \\ $$$${in}\:\mathrm{2}{nd}\:\mathrm{1}−{x}={t}\Rightarrow \\ $$$$=\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(−{ln}\left({x}\right)\right){dx} \\ $$$${t}=−{ln}\left({x}\right) \\ $$$$=\mathrm{2}\int_{\mathrm{0}} ^{\infty} {ln}\left({t}\right){e}^{−{t}} {dt} \\ $$$$\Gamma\left({x}\right)=\int_{\mathrm{0}} ^{\infty} {t}^{{x}−\mathrm{1}} {e}^{−{t}} {dt} \\ $$$$\Gamma'\left(\mathrm{1}\right)=\int_{\mathrm{0}} ^{\infty} {ln}\left({t}\right){e}^{−{t}} {dt}=\Psi\left(\mathrm{1}\right)=−\gamma \\ $$$$\Leftrightarrow\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} {xln}\left[{ln}\left({x}\right){ln}\left(\mathrm{1}−{x}\right)\right]{dx}=\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(−{ln}\left({x}\right)\right){dx}=−\mathrm{2}\gamma \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{\mathrm{1}} {xln}\left[{ln}\left({x}\right){ln}\left(\mathrm{1}−{x}\right)\right]{dx}=−\gamma \\ $$$$ \\ $$
Commented by mnjuly1970 last updated on 20/Sep/20
$$\:{excellent}\:{sir}..{thank}\:{you}\:… \\ $$
Commented by maths mind last updated on 20/Sep/20
$${withe}\:{pleasur} \\ $$
Answered by mnjuly1970 last updated on 20/Sep/20
$${my}\:{solution}.. \\ $$$$\:\:\:\:\:\:\Phi\:=\int_{\mathrm{0}} ^{\:\mathrm{1}} {xln}\left[\left(−{ln}\left({x}\right)\right)\left(−{ln}\:\left(\mathrm{1}−{x}\right)\right)\right]{dx} \\ $$$$=\int_{\mathrm{0}} ^{\:\mathrm{1}} {xln}\left(−{ln}\left({x}\right)\right){dx}\:+\int_{\mathrm{0}} ^{\:\mathrm{1}} {xln}\left(−{ln}\left(\mathrm{1}−{x}\right)\right){dx} \\ $$$$=\int_{\mathrm{0}} ^{\:\mathrm{1}} {xln}\left(−{ln}\left({x}\right)\right){dx}\:+\int_{\mathrm{0}} ^{\:\mathrm{1}} \left(\mathrm{1}−{x}\right){ln}\left(−{ln}\left({x}\right)\right){dx}\: \\ $$$$=\int_{\mathrm{0}} ^{\:\mathrm{1}} {ln}\left(−{ln}\left({x}\right)\right){dx}\overset{\left[−{ln}\left({x}\right)={t}\right]} {=}\:−\int_{\infty} ^{\:\:\mathrm{0}} {e}^{−{t}} {ln}\left({t}\right){dt} \\ $$$$\:=\int_{\mathrm{0}} ^{\:\infty} {e}^{−{t}} {ln}\left({t}\right){dt}\:=\:−\gamma\:\:\:\:\checkmark \\ $$$$\:\:\:\:\:\:\:\:\:\:{m}.{n}.{july}.\mathrm{1970} \\ $$$$\:\:\: \\ $$