Menu Close

nice-calculus-prove-that-0-e-2x-ln-1-e-x-1-e-x-1-M-N-1970-




Question Number 119570 by mnjuly1970 last updated on 25/Oct/20
               ... ♣_♣ ^♣ nice  calculus♣_♣ ^♣ ...      prove that ::                        Ω=∫_0 ^( ∞) e^(−2x) ln(((1+e^(−x) )/(1−e^(−x) )))=1                          ...★ M.N.1970★...
nicecalculusprovethat::Ω=0e2xln(1+ex1ex)=1M.N.1970
Answered by mindispower last updated on 25/Oct/20
e^(−2x) =e^(−x) ∗e^(−x)   let t=e^(−x) ⇒dt=−e^(−x) dx  ⇔=∫_0 ^1 tln(((1+t)/(1−t)))dt=−∫_0 ^1 tln(((1−t)/(1+t)))dt  x=((1−t)/(1+t))⇒t=((1−x)/(1+x)),dt=((−2)/((1+x)^2 ))dx  ⇔−2∫_0 ^1 ((1−x)/((1+x)^3 ))ln(x)dx  =−2[((1/((1+x)))−(1/((1+x)^2 )))ln(x)]_0 ^1 +2∫((1/((1+x)x))−(1/(x(1+x)^2 )))dx  =2∫_0 ^1 (1/((1+x)^2 ))=2[−(1/((1+x)))]_0 ^1 =2.(1/2)=1
e2x=exexlett=exdt=exdx⇔=01tln(1+t1t)dt=01tln(1t1+t)dtx=1t1+tt=1x1+x,dt=2(1+x)2dx2011x(1+x)3ln(x)dx=2[(1(1+x)1(1+x)2)ln(x)]01+2(1(1+x)x1x(1+x)2)dx=2011(1+x)2=2[1(1+x)]01=2.12=1
Commented by mnjuly1970 last updated on 25/Oct/20
thank you mr power..
thankyoumrpower..
Answered by mathmax by abdo last updated on 25/Oct/20
I =∫_0 ^∞  e^(−2x) ln(((1+e^(−x) )/(1−e^(−x) )))dx ⇒I =∫_0 ^∞ e^(−2x) ln(1+e^(−x) )dx−∫_0 ^∞ e^(−2x) ln(1−e^(−x) )dx  =H−K  H =∫_0 ^∞  e^(−2x) ln(1+e^(−x) )dx =_(e^(−x) =t)   −∫_0 ^1 t^2 ln(1+t)(((−dt)/t))dt  =∫_0 ^1 tln(1+t)dt  =[(t^2 /2)ln(1+t)]_0 ^1 −∫_0 ^1  (t^2 /(2(1+t)))dt  =((ln2)/2)−(1/2)∫_0 ^1 ((t^2 −1+1)/(t+1))dt =((ln2)/2)−(1/2){∫_0 ^1 (t−1)dt+∫_0 ^1  (dt/(t+1))}  =((ln2)/2)−(1/2){[(t^2 /2)−t]_0 ^1  +ln(2)} =−(1/2)(−(1/2))=(1/4)  K=∫_0 ^∞  e^(−2x) ln(1−e^(−x) )dx =_(e^(−x) =t)   −∫_0 ^1  t^2 ln(1−t)(((−dt)/t))  =∫_0 ^1  tln(1−t)dt =[(1/2)(t^2 −1)ln(1−t)]_0 ^1 −∫_0 ^1 ((t^2 −1)/2)×((−1)/(1−t))dt  =−(1/2)∫_0 ^1  (t+1)dt =−(1/2)[(t^2 /2)+t]_0 ^1  =−(1/2)((3/2))=−(3/4) ⇒  I =H−K =(1/4)+(3/4) ⇒ ★ I =1★
I=0e2xln(1+ex1ex)dxI=0e2xln(1+ex)dx0e2xln(1ex)dx=HKH=0e2xln(1+ex)dx=ex=t01t2ln(1+t)(dtt)dt=01tln(1+t)dt=[t22ln(1+t)]0101t22(1+t)dt=ln221201t21+1t+1dt=ln2212{01(t1)dt+01dtt+1}=ln2212{[t22t]01+ln(2)}=12(12)=14K=0e2xln(1ex)dx=ex=t01t2ln(1t)(dtt)=01tln(1t)dt=[12(t21)ln(1t)]0101t212×11tdt=1201(t+1)dt=12[t22+t]01=12(32)=34I=HK=14+34I=1
Commented by mnjuly1970 last updated on 25/Oct/20
thank you mr max..
thankyoumrmax..
Commented by Bird last updated on 25/Oct/20
you are welcome
youarewelcome
Answered by mnjuly1970 last updated on 25/Oct/20
Commented by mnjuly1970 last updated on 25/Oct/20
edittion :  1:  recall :: ln(((1+z)/(1−z)))=2Σ_(n=0) ^∞ (z^(2n+1) /(2n+1))  2 : Ω=^(telescopic series) (1/(2(0)+1))−lim_(n→∞) ((1/(2n+3)))=1               ...m.n.july.1970...
edittion:1:recall::ln(1+z1z)=2n=0z2n+12n+12:Ω=telescopicseries12(0)+1limn(12n+3)=1m.n.july.1970

Leave a Reply

Your email address will not be published. Required fields are marked *