Menu Close

nice-calculus-prove-that-0-e-x-ln-x-cos-x-dx-1-8-4-pi-2ln-2-




Question Number 130433 by mnjuly1970 last updated on 25/Jan/21
      ....nice   calculus...     prove that::     Ψ=∫_0 ^( ∞) e^(−x) ln(x)cos(x)dx=^? (1/8)(−4γ−π−2ln(2))
.nicecalculusprovethat::Ψ=0exln(x)cos(x)dx=?18(4γπ2ln(2))
Answered by Dwaipayan Shikari last updated on 25/Jan/21
I(a)=∫_0 ^∞ x^a e^(−x) cosx dx = ((Γ(a+1))/2^((a+1)/2) )cos((π/4)(a+1))  I′(a)=((Γ′(a+1))/2^((a+1)/2) )cos((π/4)(a+1))−(π/4).((Γ(a+1))/2^((a+1)/2) )sin((π/4)(a+1))−(1/2).((Γ(a+1))/2^((a+1)/2) )cos((π/4)(a+1))log(2)  I′(0)=((−γ)/2)−(π/8)−((log(2))/4)=−(1/8)(4γ+π+log(4))
I(a)=0xaexcosxdx=Γ(a+1)2a+12cos(π4(a+1))I(a)=Γ(a+1)2a+12cos(π4(a+1))π4.Γ(a+1)2a+12sin(π4(a+1))12.Γ(a+1)2a+12cos(π4(a+1))log(2)I(0)=γ2π8log(2)4=18(4γ+π+log(4))
Commented by mnjuly1970 last updated on 25/Jan/21
very nice .  Allah keep you...
verynice.Allahkeepyou
Answered by mnjuly1970 last updated on 26/Jan/21
   Ψ=Re(∫_0 ^( ∞) e^(−x) e^(−ix) ln(x)dx)        =Re((d/da)(∫_0 ^( ∞) e^(−x(1+i)) x^a dx=Ω)∣_(a=0)              Ω =^(x(1+i)=t)  ∫_0 ^( ∞) e^(−t) (t^a /((1+i)^(a+1) ))dt             =(1/(2^((a+1)/2) e^((iπ(a+1)/4) )) Γ(a+1)      ∴  ((d(Ω))/da)=Γ′(a+1)2^(((−(a+1))/2) ) ∗e^((−iπ(a+1))/4)                 −(((ln(2))/2)2^((−(a+1))/2) ∗e^((−iπ(a+1))/4) +((iπ)/4)e^((−iπ(a+1))/4) ∗2^((−(a+1))/2) )Γ(a+1)          ∴ (((d(Ω))/da))∣_(a=0) =((Γ′(1))/( (√2)))(cos((π/4))−isin((π/4)))                −[((ln(2))/( 2(√2)))(cos((π/4))−isin((π/4)))+((iπ)/(4(√2)))(cos((π/4))−isin((π/4)))]Γ(1)  ∴ Re((dΩ/da))∣_(a=0) =((−γ)/2)−((ln(2))/4)−(π/8)       Ψ= −(1/8)(π+4γ+2ln(2))
Ψ=Re(0exeixln(x)dx)=Re(dda(0ex(1+i)xadx=Ω)a=0Ω=x(1+i)=t0etta(1+i)a+1dt=12a+12eiπ(a+14Γ(a+1)d(Ω)da=Γ(a+1)2(a+1)2eiπ(a+1)4(ln(2)22(a+1)2eiπ(a+1)4+iπ4eiπ(a+1)42(a+1)2)Γ(a+1)(d(Ω)da)a=0=Γ(1)2(cos(π4)isin(π4))[ln(2)22(cos(π4)isin(π4))+iπ42(cos(π4)isin(π4))]Γ(1)Re(dΩda)a=0=γ2ln(2)4π8Ψ=18(π+4γ+2ln(2))

Leave a Reply

Your email address will not be published. Required fields are marked *