nice-calculus-prove-that-0-e-x-ln-x-cos-x-dx-1-8-4-pi-2ln-2- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 130433 by mnjuly1970 last updated on 25/Jan/21 ….nicecalculus…provethat::Ψ=∫0∞e−xln(x)cos(x)dx=?18(−4γ−π−2ln(2)) Answered by Dwaipayan Shikari last updated on 25/Jan/21 I(a)=∫0∞xae−xcosxdx=Γ(a+1)2a+12cos(π4(a+1))I′(a)=Γ′(a+1)2a+12cos(π4(a+1))−π4.Γ(a+1)2a+12sin(π4(a+1))−12.Γ(a+1)2a+12cos(π4(a+1))log(2)I′(0)=−γ2−π8−log(2)4=−18(4γ+π+log(4)) Commented by mnjuly1970 last updated on 25/Jan/21 verynice.Allahkeepyou… Answered by mnjuly1970 last updated on 26/Jan/21 Ψ=Re(∫0∞e−xe−ixln(x)dx)=Re(dda(∫0∞e−x(1+i)xadx=Ω)∣a=0Ω=x(1+i)=t∫0∞e−tta(1+i)a+1dt=12a+12eiπ(a+14Γ(a+1)∴d(Ω)da=Γ′(a+1)2−(a+1)2∗e−iπ(a+1)4−(ln(2)22−(a+1)2∗e−iπ(a+1)4+iπ4e−iπ(a+1)4∗2−(a+1)2)Γ(a+1)∴(d(Ω)da)∣a=0=Γ′(1)2(cos(π4)−isin(π4))−[ln(2)22(cos(π4)−isin(π4))+iπ42(cos(π4)−isin(π4))]Γ(1)∴Re(dΩda)∣a=0=−γ2−ln(2)4−π8Ψ=−18(π+4γ+2ln(2)) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-64895Next Next post: nice-calculus-calculate-0-xln-x-e-x-sin-x-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.