Menu Close

nice-calculus-prove-that-0-ln-1-2-x-2-1-pi-2-x-2-dx-ln-pi-pi-golen-ratio-




Question Number 128707 by mnjuly1970 last updated on 09/Jan/21
                 ...nice  calculus...  prove  that::         ∫_0 ^( ∞) ((ln(1+ϕ^2 x^2 ))/(1+π^2 x^2 )) dx=ln(((π+ϕ)/π))  ϕ::=  golen ratio...
nicecalculusprovethat::0ln(1+φ2x2)1+π2x2dx=ln(π+φπ)φ::=golenratio
Answered by Dwaipayan Shikari last updated on 09/Jan/21
I(a)=∫_0 ^∞ ((log(1+a^2 x^2 ))/(1+π^2 x^2 ))dx ⇒I′(a)=∫_0 ^∞ ((2ax^2 )/((1+a^2 x^2 )(1+π^2 x^2 )))dx  =((2a)/(a^2 −π^2 ))∫_0 ^∞ (1/(1+π^2 x^2 ))−(1/(1+a^2 x^2 ))dx  =((2a)/(a^2 −π^2 ))((1/π).(π/2)−(1/a).(π/2))=(1/(π+a))  I(a)=log(π+a)+C  C=−log(π)    when a=0  I(a)=log(1+(a/π)) ⇒I(ϕ)=log(1+(ϕ/π))
I(a)=0log(1+a2x2)1+π2x2dxI(a)=02ax2(1+a2x2)(1+π2x2)dx=2aa2π2011+π2x211+a2x2dx=2aa2π2(1π.π21a.π2)=1π+aI(a)=log(π+a)+CC=log(π)whena=0I(a)=log(1+aπ)I(φ)=log(1+φπ)
Commented by mnjuly1970 last updated on 09/Jan/21
 short solution but  very nice.thank you...
shortsolutionbutverynice.thankyou
Commented by Dwaipayan Shikari last updated on 09/Jan/21
With pleasure sir!
Withpleasuresir!

Leave a Reply

Your email address will not be published. Required fields are marked *