Question Number 119591 by Lordose last updated on 25/Oct/20
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:…{nice}\:\:{calculus}… \\ $$$$\:\:\:{prove}\:\:{that}\::: \\ $$$$ \\ $$$$\:\: \\ $$$$\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \sqrt{\frac{\left(\mathrm{2}^{{x}} −\mathrm{1}\right){sin}^{\mathrm{3}} \left({x}\right)}{\left(\mathrm{2}^{{x}} +\mathrm{1}\right)\left({sin}^{\mathrm{3}} \left({x}\right)+{cos}^{\mathrm{3}} \left({x}\right)\right)}}\:\:{dx}<\frac{\pi}{\mathrm{8}} \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:…{m}.{n}.\mathrm{1970}… \\ $$$$ \\ $$
Commented by mindispower last updated on 25/Oct/20
$${note}\:{true}\:{aproximative}\:{value}\:{of}\:{integral}\:\approx\mathrm{0}.\mathrm{55} \\ $$$${pi}/\mathrm{8}\simeq{o}.\mathrm{39} \\ $$
Commented by Lordose last updated on 25/Oct/20
$$\mathrm{That}'\mathrm{s}\:\mathrm{what}\:\mathrm{i}\:\mathrm{got}\:\mathrm{also} \\ $$$$\mathrm{I}\:\mathrm{was}\:\mathrm{waiting}\:\mathrm{for}\:\mathrm{sir}\:\mathrm{M}.\mathrm{N} \\ $$
Commented by mnjuly1970 last updated on 25/Oct/20
Commented by mnjuly1970 last updated on 25/Oct/20
$${hi}\:{mr}\:{power} \\ $$$${you}\:{are}\:{right}. \\ $$$${this}\:{question}\:{is}\:{written}\:{and}\:{prepared}\:{by} \\ $$$${mr}\:{hajimir}\:{from}\:{pascal}\:{academy}. \\ $$$${but}\:{as}\:{you}\:{mentioned}.{it}\:{is}\:{not}\:{correct}. \\ $$$${thank}\:{you}\:{so}\:{much}\:{for}\:{your}\:{attention}. \\ $$$${m}.{n}.\mathrm{1970} \\ $$$$ \\ $$
Commented by mnjuly1970 last updated on 25/Oct/20
Commented by mindispower last updated on 26/Oct/20
$${hello}\:{sir}\:{have}\:{you}\:{other}\:{nice}\:{quation}\:{like}\:{you} \\ $$$${alwasys}\:{poste}\: \\ $$$${nice}\:{day}\:{sir} \\ $$