Menu Close

nice-calculus-prove-that-0-pi-2-log-1-tan-x-tan-x-dx-5pi-2-48-




Question Number 124827 by mnjuly1970 last updated on 06/Dec/20
              .... nice   calculus ...         prove that::       ∫_0 ^( (π/2)) ((log(1+tan(x)))/(tan(x)))dx=((5π^2 )/(48)) ✓
.nicecalculusprovethat::0π2log(1+tan(x))tan(x)dx=5π248
Answered by mindispower last updated on 06/Dec/20
f(t)=∫_0 ^∞ ((ln(1+t.tan(x)))/(tan(x)))dx  q=f(1),q  f′(t)=∫_0 ^(π/2) (dx/(1+t.tan(x)))=∫_0 ^(π/2) ((cos(x))/(cos(x)+tsin(x)))dx  cos(x)=α(cos(x)+tsin(x))+β(−sin(x)+tcos(x)  ⇒α+βt=1  αt−β=0  α=(1/(1+t^2 )),β=(t/(1+t^2 ))  f′(t)=(1/(1+t^2 ))∫_0 ^(π/2) dx+(t/(1+t^2 ))∫_0 ^(π/2) ((−sin(x)+tcos(x))/(cos(x)+tsin(x)))dx  =(π/(2(1+t^2 )))+[(t/(1+t^2 ))ln(cos(x)+tsin(x))]_0 ^(π/2)   =(π/(2(1+t^2 )))+((tln(t))/(1+t^2 ))  f(0)=∫_0 ^(π/2) ((ln(1+otan(x)))/(tan(x)))dx=0  q=∫_0 ^1 (π/(2(1+t^2 )))+((tln(t))/(1+t^2 ))dt  =(π/2)tan^(−1) (1)+Σ_(k≥0) ∫_0 ^1 (−1)^k t^(2k+1) ln(t)dt  =(π/2).(π/4)+Σ_(k≥0) (((−1)^(k+1) )/((2k+2)^2 ))=(π/8)−(1/4)Σ_(k≥0) (((−1)^k )/((k+1)^2 ))  =(π/8)+(1/4)(Σ_(k≥0) (1/((2k+2)^2 ))−(1/4)Σ_(k≥0) (1/((2k+1)^2 )))  =(π^2 /8)+(1/(16))ζ(2)−(3/(16))ζ(2)  =(π^2 /8)−(1/8).(π^2 /6)=((5π^2 )/(48))=∫_0 ^(π/2) ((ln(1+tan(x)))/(tan(x)))dx
f(t)=0ln(1+t.tan(x))tan(x)dxq=f(1),qf(t)=0π2dx1+t.tan(x)=0π2cos(x)cos(x)+tsin(x)dxcos(x)=α(cos(x)+tsin(x))+β(sin(x)+tcos(x)α+βt=1αtβ=0α=11+t2,β=t1+t2f(t)=11+t20π2dx+t1+t20π2sin(x)+tcos(x)cos(x)+tsin(x)dx=π2(1+t2)+[t1+t2ln(cos(x)+tsin(x))]0π2=π2(1+t2)+tln(t)1+t2f(0)=0π2ln(1+otan(x))tan(x)dx=0q=01π2(1+t2)+tln(t)1+t2dt=π2tan1(1)+k001(1)kt2k+1ln(t)dt=π2.π4+k0(1)k+1(2k+2)2=π814k0(1)k(k+1)2=π8+14(k01(2k+2)214k01(2k+1)2)=π28+116ζ(2)316ζ(2)=π2818.π26=5π248=0π2ln(1+tan(x))tan(x)dx
Commented by mnjuly1970 last updated on 06/Dec/20
again  thank you  sir mindspower
againthankyousirmindspower
Commented by mindispower last updated on 06/Dec/20
always pleasur sir
alwayspleasursir
Answered by mathmax by abdo last updated on 06/Dec/20
let f(a)=∫_0 ^(π/2)  ((log(1+atanx))/(tanx))dx with a>0⇒f^′ (a)=∫_0 ^(π/2) ((tanx)/((1+atanx)tanx))dx  =∫_0 ^(π/2)  (dx/(1+atanx))=_(tanx=t)   ∫_0 ^∞   (dt/((1+t^2 )(1+at))) =_(at=z)    ∫_0 ^∞   (dz/(a(1+(z^2 /a^2 ))(z+1)))  =a ∫_0 ^∞   (dz/((z^2  +a^2 )(z+1))) let decompose F(z)=(1/((z+1)(z^2  +a^2 )))  F(z)=(α/(z+1)) +((βz+n)/(z^2  +a^2 ))  α =(1/(a^2  +1)) ,lim_(z→+∞) zF(z)=0=α+β ⇒β=−(1/(a^2  +1))   F(0)=(1/a^2 ) =α+(n/a^2 ) ⇒1=a^2 α+n ⇒n=1−(a^2 /(a^2  +1))=(1/(a^2  +1)) ⇒  F(z)=(1/((a^2  +1)(z+1))) +((−(1/(a^2 +1))z+(1/(a^2 +1)))/(z^2  +a^2 )) ⇒  ∫_0 ^∞  F(z)dz =(1/(a^2  +1))∫_0 ^∞  (dz/(z+1))−(1/(2(a^2  +1)))∫_0 ^∞   ((2z−2)/(z^2  +a^2 ))dz  =(1/(a^2  +1))∫_0 ^∞  ((1/(z+1))−(1/2)×((2z)/(z^2  +1)))dz  +(1/(a^2  +1))∫_0 ^∞  (dz/(z^2  +a^2 ))(→z=au)  =(1/(a^2  +1))[ln∣((z+1)/( (√(z^2  +1))))∣]_0 ^∞  +(1/(a^2  +1))∫_0 ^∞   ((adu)/(a^2 (u^2  +1)))  =(1/(a(a^2  +1)))×(π/2) ⇒f^′ (a)=(π/(2(1+a^2 ))) ⇒f(a)=(π/2) arctan(a)+C  f(0)=C ⇒f(a)=(π/2) arctan(a) and   ∫_0 ^(π/2) ((log(1+tanx))/(tanx))dx =(π/2)arctan(1) =(π/2).(π/4)=(π^2 /8)
letf(a)=0π2log(1+atanx)tanxdxwitha>0f(a)=0π2tanx(1+atanx)tanxdx=0π2dx1+atanx=tanx=t0dt(1+t2)(1+at)=at=z0dza(1+z2a2)(z+1)=a0dz(z2+a2)(z+1)letdecomposeF(z)=1(z+1)(z2+a2)F(z)=αz+1+βz+nz2+a2α=1a2+1,limz+zF(z)=0=α+ββ=1a2+1F(0)=1a2=α+na21=a2α+nn=1a2a2+1=1a2+1F(z)=1(a2+1)(z+1)+1a2+1z+1a2+1z2+a20F(z)dz=1a2+10dzz+112(a2+1)02z2z2+a2dz=1a2+10(1z+112×2zz2+1)dz+1a2+10dzz2+a2(z=au)=1a2+1[lnz+1z2+1]0+1a2+10adua2(u2+1)=1a(a2+1)×π2f(a)=π2(1+a2)f(a)=π2arctan(a)+Cf(0)=Cf(a)=π2arctan(a)and0π2log(1+tanx)tanxdx=π2arctan(1)=π2.π4=π28
Commented by mnjuly1970 last updated on 06/Dec/20
thank you so much sir max...
thankyousomuchsirmax
Commented by mathmax by abdo last updated on 06/Dec/20
you are welcome sir
youarewelcomesir

Leave a Reply

Your email address will not be published. Required fields are marked *