Question Number 124827 by mnjuly1970 last updated on 06/Dec/20

Answered by mindispower last updated on 06/Dec/20
![f(t)=∫_0 ^∞ ((ln(1+t.tan(x)))/(tan(x)))dx q=f(1),q f′(t)=∫_0 ^(π/2) (dx/(1+t.tan(x)))=∫_0 ^(π/2) ((cos(x))/(cos(x)+tsin(x)))dx cos(x)=α(cos(x)+tsin(x))+β(−sin(x)+tcos(x) ⇒α+βt=1 αt−β=0 α=(1/(1+t^2 )),β=(t/(1+t^2 )) f′(t)=(1/(1+t^2 ))∫_0 ^(π/2) dx+(t/(1+t^2 ))∫_0 ^(π/2) ((−sin(x)+tcos(x))/(cos(x)+tsin(x)))dx =(π/(2(1+t^2 )))+[(t/(1+t^2 ))ln(cos(x)+tsin(x))]_0 ^(π/2) =(π/(2(1+t^2 )))+((tln(t))/(1+t^2 )) f(0)=∫_0 ^(π/2) ((ln(1+otan(x)))/(tan(x)))dx=0 q=∫_0 ^1 (π/(2(1+t^2 )))+((tln(t))/(1+t^2 ))dt =(π/2)tan^(−1) (1)+Σ_(k≥0) ∫_0 ^1 (−1)^k t^(2k+1) ln(t)dt =(π/2).(π/4)+Σ_(k≥0) (((−1)^(k+1) )/((2k+2)^2 ))=(π/8)−(1/4)Σ_(k≥0) (((−1)^k )/((k+1)^2 )) =(π/8)+(1/4)(Σ_(k≥0) (1/((2k+2)^2 ))−(1/4)Σ_(k≥0) (1/((2k+1)^2 ))) =(π^2 /8)+(1/(16))ζ(2)−(3/(16))ζ(2) =(π^2 /8)−(1/8).(π^2 /6)=((5π^2 )/(48))=∫_0 ^(π/2) ((ln(1+tan(x)))/(tan(x)))dx](https://www.tinkutara.com/question/Q124855.png)
Commented by mnjuly1970 last updated on 06/Dec/20

Commented by mindispower last updated on 06/Dec/20

Answered by mathmax by abdo last updated on 06/Dec/20
![let f(a)=∫_0 ^(π/2) ((log(1+atanx))/(tanx))dx with a>0⇒f^′ (a)=∫_0 ^(π/2) ((tanx)/((1+atanx)tanx))dx =∫_0 ^(π/2) (dx/(1+atanx))=_(tanx=t) ∫_0 ^∞ (dt/((1+t^2 )(1+at))) =_(at=z) ∫_0 ^∞ (dz/(a(1+(z^2 /a^2 ))(z+1))) =a ∫_0 ^∞ (dz/((z^2 +a^2 )(z+1))) let decompose F(z)=(1/((z+1)(z^2 +a^2 ))) F(z)=(α/(z+1)) +((βz+n)/(z^2 +a^2 )) α =(1/(a^2 +1)) ,lim_(z→+∞) zF(z)=0=α+β ⇒β=−(1/(a^2 +1)) F(0)=(1/a^2 ) =α+(n/a^2 ) ⇒1=a^2 α+n ⇒n=1−(a^2 /(a^2 +1))=(1/(a^2 +1)) ⇒ F(z)=(1/((a^2 +1)(z+1))) +((−(1/(a^2 +1))z+(1/(a^2 +1)))/(z^2 +a^2 )) ⇒ ∫_0 ^∞ F(z)dz =(1/(a^2 +1))∫_0 ^∞ (dz/(z+1))−(1/(2(a^2 +1)))∫_0 ^∞ ((2z−2)/(z^2 +a^2 ))dz =(1/(a^2 +1))∫_0 ^∞ ((1/(z+1))−(1/2)×((2z)/(z^2 +1)))dz +(1/(a^2 +1))∫_0 ^∞ (dz/(z^2 +a^2 ))(→z=au) =(1/(a^2 +1))[ln∣((z+1)/( (√(z^2 +1))))∣]_0 ^∞ +(1/(a^2 +1))∫_0 ^∞ ((adu)/(a^2 (u^2 +1))) =(1/(a(a^2 +1)))×(π/2) ⇒f^′ (a)=(π/(2(1+a^2 ))) ⇒f(a)=(π/2) arctan(a)+C f(0)=C ⇒f(a)=(π/2) arctan(a) and ∫_0 ^(π/2) ((log(1+tanx))/(tanx))dx =(π/2)arctan(1) =(π/2).(π/4)=(π^2 /8)](https://www.tinkutara.com/question/Q124882.png)
Commented by mnjuly1970 last updated on 06/Dec/20

Commented by mathmax by abdo last updated on 06/Dec/20
